Cd-free Cu-doped ZnInS/ZnS Core/Shell Nanocrystals: Controlled Synthesis And Photophysical Properties

Nanoscale Research Letters - Tập 13 - Trang 1-11 - 2018
Manpreet Kaur1,2, Ashma Sharma2,3, Murat Olutas2,4, Onur Erdem2, Akshay Kumar1, Manoj Sharma1,2,3, Hilmi Volkan Demir2,3
1Department of Nanotechnology, Sri Guru Granth Sahib World University, Punjab, India
2Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
3LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
4Department of Physics, Abant  İzzet Baysal University, Bolu, Turkey

Tóm tắt

Here, we report efficient composition-tunable Cu-doped ZnInS/ZnS (core and core/shell) colloidal nanocrystals (CNCs) synthesized by using a colloidal non-injection method. The initial precursors for the synthesis were used in oleate form rather than in powder form, resulting in a nearly defect-free photoluminescence (PL) emission. The change in Zn/In ratio tunes the percentage incorporation of Cu in CNCs. These highly monodisperse Cu-doped ZnInS CNCs having variable Zn/In ratios possess peak emission wavelength tunable from 550 to 650 nm in the visible spectrum. The quantum yield (QY) of these synthesized Cd-free CNCs increases from 6.0 to 65.0% after coating with a ZnS shell. The CNCs possessing emission from a mixed contribution of deep trap and dopant states to only dominant dopant-related Stokes-shifted emission are realized by a careful control of stoichiometric ratio of different reactant precursors during synthesis. The origin of this shift in emission was understood by using steady state and time-resolved fluorescence (TRF) spectroscopy studies. As a proof-of-concept demonstration, these blue excitable Cu-doped ZnInS/ZnS CNCs have been integrated with commercial blue LEDs to generate white-light emission (WLE). The suitable combination of these highly efficient doped CNCs results led to a Commission Internationale de l’Enclairage (CIE) color coordinates of (0.33, 0.31) at a color coordinate temperature (CCT) of 3694 K, with a luminous efficacy of optical radiation (LER) of 170 lm/Wopt and a color rendering index (CRI) of 88.

Tài liệu tham khảo

Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2009) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354. Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134:15607–15620. Kershaw SV, Susha AS, Rogach AL (2013) Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev 42:3033–3087. https://doi.org/10.1039/c2cs35331h. Wang J, Mora-Seró I, Pan Z et al (2013) Core/shell colloidal quantum dot exciplex sates for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135:15913–15922. https://doi.org/10.1021/ja4079804. Rogach AL, Gaponik N, Lupton JM et al (2008) Light-emitting diodes with semiconductor nanocrystals. Angew Chem Int Ed 47:6538–6549. https://doi.org/10.1002/anie.200705109. Beard MC, Luther JM, Midgett AG et al (2010) Third generation photovoltaics: multiple exciton generation in colloidal quantum dots, quantum dot arrays, and quantum dot solar cells. In: Photovoltaic specialists conference (PVSC), 2010 35th IEEE, pp 370–375. Chen Z, Moore J, Radtke G et al (2007) Binary nanoparticle Superlattices in the semiconductor-semiconductor system: CdTe and CdSe. J Am Chem Soc 129:15702–15709. Liu X, Jiang Y, Fu F, Guo W (2013) Facile synthesis of high-quality ZnS, CdS, CdZnS, and CdZnS/ZnS core/shell quantum dots: characterization and diffusion mechanism. Mater Sci Semicond Process 16:1723–1729. https://doi.org/10.1016/j.mssp.2013.06.007. Zhang W, Zhou X, Zhong X (2012) One-pot noninjection synthesis of cu-doped ZnxCd1-xS nanocrystals. Inorg Chem 51:3579–3587. Shao H, Wang C, Xu S et al (2014) Hydrazine-promoted sequential cation exchange: a novel synthesis method for doped ternary semiconductor nanocrystals with tunable emission. Nanotechnology 25:25603. https://doi.org/10.1088/0957-4484/25/2/025603. Lee JY, Heon Nam D, Oh MH et al (2014) Serum-stable quantum dot-protein hybrid nanocapsules for optical bio-imaging. Nanotechnology 25:175702. https://doi.org/10.1088/0957-4484/25/17/175702. Mandal G, Darragh M, Wang YA, Heyes CD (2013) Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells. Chem Commun 49:624–626. https://doi.org/10.1039/c2cc37529j. Mino L, Agostini G, Borfecchia E (2016) Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots. Nanotechnology 27:155708. Quan Z, Yang D, Li C et al (2009) Multicolor tuning of manganese-doped ZnS colloidal nanocrystals. Langmuir 25:10259–10262. https://doi.org/10.1021/la901056d. Cao S, Zhao J, Yang W et al (2015) Mn2+-doped Zn–In–S quantum dots with tunable bandgaps and high photoluminescence properties. J Mater Chem C 3:8844–8851. Cao S, Li C, Wang L et al (2014) Long-lived and well-resolved Mn2+ ion emissions in CuInS-ZnS quantum dots. Sci Rep 4:7510. https://doi.org/10.1038/srep07510. Zeng R, Shen R, Zhao Y, Li X (2014) Aqueous synthesis of Cu-doped ZnCdS/ZnS core/shell nanocrystals with a new and highly reactive sulfur source. Nanotechnology 135602:135602–135610. https://doi.org/10.1088/0957-4484/25/13/135602. Jiang T, Song J, Wang H et al (2015) Aqueous synthesis of color tunable Cu doped Zn-In-S/ZnS nanoparticles in the whole visible region for cellular imaging. J Mater Chem B 3:2402–2410. Zhang W, Lou Q, Ji W et al (2014) Color-tunable highly bright photoluminescence of cadmium-free cu-doped Zn−In−S nanocrystals and electroluminescence. Chem Mater 26:1204–1212. Cao S, Ji W, Zhao J et al (2016) Color-tunable photoluminescence of Cu-doped Zn–In–Se quantum dots and their electroluminescence properties. J Mater Chem C 4:581–588. https://doi.org/10.1039/C5TC04019A. Wang Z-C, Xu S-H, Wang C et al (2015) Application of aqueous Ag: ZnInSe quantum dots to non-toxic sensitized solar cells. RSC Adv 5:46186–46191. Zhou P, Zhang X, Li L et al (2015) Temperature-dependent photoluminescence properties of Mn: ZnCuInS nanocrystals. Opt Mater Express 5:3357–3361. https://doi.org/10.1364/OME.5.002069. Tang X, Zu Z, Bian L et al (2016) Synthesis of Mn doping Ag–In–Zn–S nanoparticles and their photoluminescence properties. Mater Des 91:256–261. https://doi.org/10.1016/j.matdes.2015.11.080. Mao B, Chuang C, Mccleese C et al (2014) Near-infrared emitting AgInS2/ZnS nanocrystals. J Phys Chem C 118:13883–13889. Dong X, Xu J, Zhang X et al (2017) Investigating photoluminescence mechanism of Cu-doped Zn–In–Se quantum dots by Zn/in ratio. J Phys Chem C 121:16978–16984. Yuan X, Hua J, Zeng R et al (2014) Efficient white light emitting diodes based on Cu-doped ZnInS/ZnS core/shell quantum dots. Nanotechnology 25:435202. https://doi.org/10.1088/0957-4484/25/43/435202. Yuan X, Ma R, Zhang W et al (2015) Dual emissive manganese and copper Co-doped Zn−In−S quantum dots as a single color-converter for high color rendering white-light-emitting diodes. Appl Mater Interfaces 7:8659–8666. https://doi.org/10.1021/acsami.5b00925. Erdem T, Nizamoglu S, Sun XW, Demir HV (2010) A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Opt Express 18:340–347. https://doi.org/10.1364/OE.18.000340. de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230–232. Kumar S, Chawla K, Chandra R (2011) High temperature powder diffraction study of (Zn,Cd)S and ZnxCd1-xS nanopowders. RSC Adv 1:1078–1082. https://doi.org/10.1039/c1ra00064k. Sharma M, Gungor K, Yeltik A et al (2017) Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv Mater 29:1700821. https://doi.org/10.1002/adma.201700821. Zhu J, Mei S, Yang W et al (2017) Tunable emission of Cu (Mn)-doped ZnInS quantum dots via dopant interaction. J Colloid Interface Sci 506:27–35. https://doi.org/10.1016/j.jcis.2017.06.043. De TL, Prato M, Genovese A et al (2012) Strongly fluorescent quaternary Cu−In−Zn−S nanocrystals prepared from Cu1-xInS2 nanocrystals by partial cation exchange. Chem Mater 24:2400−2406. Zhong H, Wang Z, Bovero E et al (2011) Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence. J Phys Chem C 115:12396–12402. Zhang W, Zhong X (2011) Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst. Inorg Chem 50:4065–4072. Huang G, Wang C, Xu S et al (2016) Ag- and Mn-doped ZnInS/ZnS dual-emission quantum dots with zone tunability in the color coordinate. Nanotechnology 27:185602–185609. https://doi.org/10.1088/0957-4484/27/18/185602. Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779. https://doi.org/10.1126/science.1143802. Grandhi GK, Viswanatha R (2013) Tunable infrared phosphors using Cu doping in semiconductor nanocrystals: surface electronic structure evaluation. J Phys Chem Lett 4:409–415. https://doi.org/10.1021/jz3021588. Zhang JZ (1997) Ultrafast studies of Electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface. Acc Chem Res 30:423–429. https://doi.org/10.1021/ar960178j. Jiaming Z, Xuke Z, Zhang JY (2009) Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals. J Phys Chem C 113:9512–9515. https://doi.org/10.1021/jp9026354. Sivasankar J, Mallikarjana P, Rigana Begam M et al (2016) Structural, optical and magnetic properties of Cu doped CdSe powders prepared by solid state reaction method. J Mater Sci Mater Electron 27:2300–2304. https://doi.org/10.1007/s10854-015-4025-9. Erdem T, Demir HV (2013) Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics 2:57–81.