Cav3.2 T-type calcium channels control acute itch in mice

Molecular Brain - Tập 13 - Trang 1-7 - 2020
Vinicius M. Gadotti1, Joanna M. Kreitinger2, Nicholas B. Wageling2, Dylan Budke2, Philippe Diaz2,3, Gerald W. Zamponi1
1Department of Physiology and Pharmacology. Hotchkiss Brain Institute, Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
2Dermaxon LLC, Missoula, USA
3Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, USA

Tóm tắt

Cav3.2 T-type calcium channels are important mediators of nociceptive signaling, but their roles in the transmission of itch remains poorly understood. Here we report a key involvement of these channels as key modulators of itch/pruritus-related behavior. We compared scratching behavior responses between wild type and Cav3.2 null mice in models of histamine- or chloroquine-induced itch. We also evaluated the effect of the T-type calcium channel blocker DX332 in male and female wild-type mice injected with either histamine or chloroquine. Cav3.2 null mice exhibited decreased scratching responses during both histamine- and chloroquine-induced acute itch. DX332 co-injected with the pruritogens inhibited scratching responses of male and female mice treated with either histamine or chloroquine. Altogether, our data provide strong evidence that Cav3.2 T-type channels exert an important role in modulating histamine-dependent and -independent itch transmission in the primary sensory afferent pathway, and highlight these channels as potential pharmacological targets to treat pruritus.

Tài liệu tham khảo

Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7:535–47. Koch SC, Acton D, Goulding M. Spinal circuits for touch, pain, and itch. Annu Rev Physiol. 2018;80:189–217. Yosipovitch G, Bernhard JD. Chronic pruritus. N Engl J Med. 2013;368:1625–34. Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79:618–39. Bautista DM, Wilson SR, Hoon MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci. 2014;17:175–82. LaMotte RH, Dong X, Ringkamp M. Sensory neurons, and circuits mediating itch. Nat Rev Neurosci. 2014;15:19–31. François A, Schüetter N, Laffray S, Sanguesa J, Pizzocaro A, Dubel S, Mantilleri A, Nargeot J, Noël J, Wood JN, Moqrich A, Pongs O, Bourinet E. The low-threshold Calcium Channel Cav3.2 determines low-threshold mechanoreceptor function. Cell Rep. 2015;10:370–82. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67:821–70. Snutch TP, Zamponi GW. Recent advances in the development of T-type calcium channel blockers for pain intervention. Pharmacology Br J Pharmacol. 2018;175:2375–83. Candelas M, Reynders A, Arango-Lievano A, Neumayer C, Fruquière A, Demes E, Hamid J, Lemmers C, Bernat C, Monteil A, Compan V, Laffray S, Inquimbert P, Le Feuvre Y, Zamponi GW, Moqrich A, Bourinet E, Méry PF. Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci Rep. 2019;9:3112. Wang XL, Tian B, Huang Y, Peng XY, Chen LH, Li JC, Liu T. Hydrogen Sulfide-Induced Itch Requires Activation of Cav3.2 T-type Calcium Channel in Mice. Sci Reports. 2015;5:16768. Momose A, Yabe M, Chiba S, Kumakawa K, Shiraiwa Y, Mizukami H. Role of Dysregulated ion channels in sensory neurons in chronic kidney disease-associated pruritus. Medicines. 2019;6:110. Bladen C, McDaniel SW, Gadotti VM, Petrov RR, Berger ND, Diaz P. Zamponi, GW characterization of novel cannabinoid-based T-type calcium channel blockers with analgesic effects. ACS Chem Neurosci. 2015;6:277–87. Han L, Ma C, Liu Q, Weng HJ, Cui Y, Tang Z, Kim Y, Nie H, Qu L, Patel KN, Li Z, McNeil B, He S, Guan Y, Xiao B, Lamotte RH, Dong X. A subpopulation of Nociceptors specifically linked to itch. Nat Neurosci. 2013;16:174–82. Bell JK, McQueen DS, Rees JL. Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in Balb C mice. Br J Pharmacol. 2004;142:374–80. Lin SF, Wang B, Zhang FM, Fei YH, Gu JH, Li J, Bi LB, Liu XJ. T-type calcium channels, but not Cav3.2, in the peripheral sensory afferents are involved in acute itch in mice. Biochem Biophys Res Commun. 2017;487:801–6. Traboulsie A, Chemin J, Chevalier M, Quignard JF, Nargeot J, Lory P. Subunit-specific modulation of T-type calcium channels by zinc. J Physiol. 2007;578:159–71. Paus R, Schmelz M, Biró T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest. 2006;116:1174–86. Bartsch VB, Niehaus JK, Taylor-Blake B, Zylka MJ. Enhanced histamine-induced itch in diacylglycerol kinase iota knockout mice. PLoS One. 2019;14:e0217819. Dong X, Dong X. Peripheral and central mechanisms of itch. Neuron. 2018;98:482–94. Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF. Cellular basis of itch sensation. Science. 2009;325:1531–4. Namer B, Carr R, Johanek LM, Schmelz M, Handwerker HO, Ringkamp M. Separate peripheral pathways for pruritus in man. J Neurophysiol. 2008;100:2062–9. Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ, Geng Y, Undem BJ, Kollarik M, Chen ZF, Anderson DJ, Dong X. Sensory Neuron-Specific GPCR Mrgprs are itch receptors mediating Chloroquine-induced pruritus. Cell. 2009;139:1353–65. Roberson DP, Gudes S, Sprague JM, Patoski HA, Robson VK, Blasl F, Duan B, Oh SB, Bean BP, Ma Q, Binshtok AM, Woolf CJ. Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat Neurosci. 2013;16:910–8. Grundmann S, Stander S. Chronic pruritus: clinics and treatment. Ann Dermatol. 2011;23:1–11. Yosipovitch G, Papoiu ADP. What causes itch in atopic dermatitis? Curr Allergy Asthma Rep. 2008;8:306–11. Akiyama T, Carstens MI, Carstens E. Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain. 2010;151:378–83. Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 2007;27:2331–7. Imamachi N, Park GH, Lee H, Anderson DJ, Simon MI, Basbaum AI, Han SK. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. PNAS. 2009;106:11330–5. Stemkowski P, García-Caballero A, Gadotti VM, M’Dahoma S, Huang S, Black SAG, Chen L, Souza IA, Zhang Z, Zamponi GW. TRPV1 Nociceptor activity initiates USP5/T-type channel-mediated plasticity. Cell Rep. 2016;17:2901–12. Okubo K, Matsumara M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y. Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol. 2012;166:1738–43. Sousa-Valente J, Andreou AP, Urban L, Nagy I. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol. 2014;171:2508–27. García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, François A, Bourinet E, Zamponi GW. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron. 2014;83:1144–58. Gadotti VM, Caballero AG, Berger ND, Gladding CM, Chen L, Pfeifer TA, Zamponi GW. Small organic molecule disruptors of Cav3.2 – USP5 interactions reverse inflammatory and neuropathic pain. Mol Pain. 2015;11:12.