Categorization and eccentricity of AI risks: a comparative study of the global AI guidelines
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abubakar, A. M., Behravesh, E., Rezapouraghdam, H., & Yildiz, S. B. (2019). Applying artificial intelligence technique to predict knowledge hiding behavior. International Journal of Information Management, 49, 45–57. https://doi.org/10.1016/j.ijinfomgt.2019.02.006
Acemoglu, D., & Restrepo, P. (2020). The wrong kind of AI? Artificial intelligence and the future of labour demand. Cambridge Journal of Regions, Economy and Society, 13(1), 25–35. https://doi.org/10.1093/cjres/rsz022
Andreessen, M. (2011). Why software is eating the world. Wall Street Journal, 20(2011), C2.
Anthony (Tony) Cox Jr, L. (2008). What’s wrong with risk matrices? Risk Analysis: an International Journal, 28(2), 497–512. https://doi.org/10.1111/j.1539-6924.2008.01030.x
Appenzeller, T. (2017). The AI revolution in science. Science. https://www.sciencemag.org/news/2017/07/ai-revolution-science
Arksey, H., & O'Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, pp. 19–32. https://doi.org/10.1080/1364557032000119616
Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59–64. https://doi.org/10.1038/s41586-018-0637-6
Awad, E., Anderson, M., Anderson, S. L., & Liao, B. (2020). An approach for combining ethical principles with public opinion to guide public policy. Artificial Intelligence, 287, 103349. https://doi.org/10.1016/j.artint.2020.103349
Balkin, J. M. (2018). Free Speech is a Triangle. Columbia Law Review, 118(7), 2011–2056.
Bandara, R., Fernando, M., & Akter, S. (2020). Privacy concerns in E-commerce: A taxonomy and a future research agenda. Electronic Markets, 30(3) 629–647. https://doi.org/10.1007/s12525-019-00375-6
Biswas, B., & Mukhopadhyay, A. (2018). G-RAM framework for software risk assessment and mitigation strategies in organizations. Journal of Enterprise Information Management, 31(2), 276–299. https://doi.org/10.1108/JEIM-05-2017-0069
Boddington, P. (2018). Alphabetical list of resources. Ethics for Artificial Intelligence. https://www.cs.ox.ac.uk/efai/resources/alphabetical-list-of-resources/
Calo, R. (2017). Artificial Intelligence policy: a primer and roadmap. UCDL Review, 51, 399.
Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial intelligence and the ‘good society’: the US, EU, and UK approach. Science and Engineering Ethics, 24(2), 505–528. https://doi.org/10.1007/s11948-017-9901-7
Chinese National Governance Committee for the New Generation Artificial Intelligence. (2019). Governance Principles for the New Generation Artificial Intelligence–Developing Responsible Artificial Intelligence. China Daily. https://www.chinadaily.com.cn/a/201906/17/WS5d07486ba3103dbf14328ab7.html
Cox, L. A., Jr., Babayev, D., & Huber, W. (2005). Some limitations of qualitative risk rating systems. Risk Analysis: an International Journal, 25(3), 651–662. https://doi.org/10.1111/j.1539-6924.2005.00615.x
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and Machines 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5
Floridi, L., Cowls, J., King, T. C., & Taddeo, M. (2020). How to design AI for social good: seven essential factors. Science and Engineering Ethics, 26(3), 1771–1796. https://doi.org/10.1007/s11948-020-00213-5
Future of Life Institute. (2017). Asilomar AI Principles. https://futureoflife.org/ai-principles/
Goldacre, B. (2014). When data gets creepy: the secrets we don’t realize we’re giving away. The Guardian. https://www.theguardian.com/technology/2014/dec/05/when-data-gets-creepy-secrets-were-giving-away
Greene, D., Hoffman, A. L., & Stark, L. (2019). Better, nicer, clearer, fairer: a critical assessment of the movement for ethical artificial intelligence and machine learning. Hawaii International Conference on System Sciences (HICSS), 1–10. https://doi.org/10.24251/HICSS.2019.258
Grimmelmann, J. (2004). Regulation by Software. Yale LJ, 114, 1719.
Hagendorff, T. (2020). The ethics of AI ethics: an evaluation of guidelines. Minds and Machines, 1–22. https://doi.org/10.1007/s11023-020-09517-8
Harari, Y. N. (2017). Reboot for the AI revolution. Nature, 550, 324–327. https://doi.org/10.1038/550324a
Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk—definition, measure and modeling, Omega, 52, 119–132. https://doi.org/10.1016/j.omega.2014.10.004
Hong, J. I., & Landay, J. A. (2004). An architecture for privacy-sensitive ubiquitous computing. Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services, 177–189. https://doi.org/10.1145/990064.990087
ISO. (2002). Risk Management: Guidelines for use in standards. ISO/IEC Guide 73.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
Krafft, T. D., Zweig, K. A., & König, P. D. (2020). How to regulate algorithmic decision‐making: a framework of regulatory requirements for different applications. Regulation & Governance. https://doi.org/10.1111/rego.12369
Lessig, L. (2009). Code: And other laws of cyberspace.Version 2.0. New York: Basic Books.
Liu, H. W., Lin, C. F., & Chen, Y. J. (2019). Beyond State v Loomis: artificial intelligence, government algorithmization and accountability. International Journal of Law and Information Technology, 27(2), 122–141. https://doi.org/10.1093/ijlit/eaz001
Markowski, A. S., & Mannan, M. S. (2008). Fuzzy risk matrix. Journal of Hazardous Materials, 159(1), 152–157. https://doi.org/10.1016/j.jhazmat.2008.03.055
McNamara, A., Smith, J., & Murphy-Hill, E. (2018). Does ACM’s code of ethics change ethical decision making in software development? In G. T. Leavens, A. Garcia, C. S. Păsăreanu (Eds.) Proceedings of the 26th ACM joint meeting on european software engineering conference and sym- posium on the foundations of software engineering—ESEC/FSE 2018, 1–7. New York: ACM Press. https://doi.org/10.1145/3236024.3264833
Meek, T., Barham, H., Beltaif, N., Kaadoor, A., & Akhter, T. (2016). Managing the ethical and risk implications of rapid advances in Artificial Intelligence. International Conference on Management of Engineering and Technology (PICMET), Portland, 682–693, 108. https://doi.org/10.1109/PICMET.2016.7806752
Microsoft. (2018). Responsible bots: 10 guidelines for developers of conversational AI. https://www.microsoft.com/en-us/research/publication/responsible-bots/
National and international AI strategies. (2018). Future of Life Institute. https://futureoflife.org/national-international-ai-strategies
Nelson, G. S. (2019). Bias in Artificial Intelligence. North Carolina Medical Journal, 80(4), 220–222. https://doi.org/10.18043/ncm.80.4.220
Ni, H., Chen, A., & Chen, N. (2010). Some extensions on risk matric approach. Safety Science, 48, 1269–1278. https://doi.org/10.1016/j.ssci.2010.04.005
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
Polanyi, M. (2009). The tacit dimension. University of Chicago Press.
Renfroe, N. A., & Smith, J. L. (2007). Whole building design guide: threat/vulnerability assessments and risk analysis. Washington, DC: National Institute of Building Sciences. http://www.wbdg.org/design/riskanalysis.php
Roberts, H., Cowls, J., Morley, J., Taddeo, M., Wang, V., & Floridi, L. (2020). The Chinese approach to artificial intelligence: an analysis of policy, ethics, and regulation. AI & Society, 1–19. https://doi.org/10.1007/s00146-020-00992-2
Rosenbloom, J.S. (1972). Case Study in Risk Management. Prentice Hall, 63–67.
Sajjadiani, S., Sojourner, A. J., Kammeyer-Mueller, J. D., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. Journal of Applied Psychology, 104(10), 1207. https://doi.org/10.1037/apl0000405
Sampson, C. J., Arnold, R., Bryan, S., Clarke, P., Ekins, S., Hatswell, A., Hawkins, N., Langham, S., Marshall, D., Sadatsafavi, M., Sullivan, W., Wilson, E. C. F., & Wrightson, T. (2019). Transparency in decision modelling: what, why, who and how?. Pharmacoeconomics, 1–15. https://doi.org/10.1007/s40273-019-00819-z
Sánchez, E. C., Sánchez-Medina, A. J., & Pellejero, M. (2020). Identifying critical hotel cancellations using artificial intelligence. Tourism Management Perspectives, 35, 100718. https://doi.org/10.1016/j.tmp.2020.100718
Sánchez-Medina, A. J., Galván-Sánchez, I., & Fernández-Monroy, M. (2020). Applying artificial intelligence to explore sexual cyberbullying behaviour. Heliyon, 6(1), e03218. https://doi.org/10.1016/j.heliyon.2020.e03218
Schaar, P. (2010). Privacy by design. Identity in the Information Society, 3(2), 267–274. https://doi.org/10.1007/s12394-010-0055-x
Summaries of AI policy resources. (2018). Future of Life Institute. https://futureoflife.org/ai-policy-resources/
Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: machine learning and Artificial Intelligence in sales research and practice. Industrial Marketing Management, 69, 135–146. https://doi.org/10.1016/j.indmarman.2017.12.019.
Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., & Zhai, C. (2014). Bug characteristics in open source software. Empirical Software Engineering, 19(6), 1665–1705. https://doi.org/10.1007/s10664-013-9258-8
Thiebes, S., Lins, S., & Sunyaev, A. (2020). Trustworthy artificial intelligence. Electronic Markets, 1–18. https://doi.org/10.1007/s12525-020-00441-4
Torresen, J. (2018). A review of future and ethical perspectives of robotics and AI. Frontiers in Robotics and AI, 4, 75. https://doi.org/10.3389/frobt.2017.00075
Turton, W., & Martin, A. (2020). How deepfakes make disinformation more real than ever. Bloomberg. https://www.bloomberg.com/news/articles/2020-01-06/how-deepfakes-make-disinformation-more-real-than-ever-quicktake
Vogl, T. M., Seidelin, C., Ganesh, B., & Bright, J. (2020). Smart technology and the emergence of algorithmic bureaucracy: Artificial Intelligence in UK local authorities. Public Administration Review, 80(6), 946–961. https://doi.org/10.1111/puar.13286
Williams, C. A., & Heins, R. M. (1985). Risk Management and Insurance, 7–9. McGraw Hill.
Winfield, A. (2017). A round up of robotics and AI ethics. Alan Winfield’s Web Log. http://alanwinfield.blogspot.com/2019/04/an-updated-round-up-of-ethical