Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited

BMC Systems Biology - Tập 4 Số 1 - 2010
Alexei Vázquez1, Jiangxia Liu2, Yi Zhou2, Zoltán N. Oltvai2
1Department of Radiation Oncology, The Cancer Institute of New Jersey and UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, 08963, USA
2Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309

Brahimi-Horn MC, Chiche J, Poyssegur J: Hypoxia signaling controls metabolic demand. Curr Opin Cell Biol. 2007, 19: 223-229. 10.1016/j.ceb.2007.02.003

Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nature Rev Cancer. 2004, 4: 891-899. 10.1038/nrc1478.

Zu XL, Guppy M: Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Comm. 2004, 313: 459-465. 10.1016/j.bbrc.2003.11.136

Heiden Vander MG, Cantley LC, Thompson CB: Understanding the Warburg Effect: The metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809

Wieman HL, Wofford JA, Rathmell JC: Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 2007, 18: 1437-1446. 10.1091/mbc.E06-07-0593

Copeland WC, Wachsman JT, Johnson FM, Penta JS: Mitochondrial DNA alterations in cancer. Cancer Invest. 2002, 20: 557-569. 10.1081/CNV-120002155

Nomoto S, Sanchez-Cespedes M, Sidransky D: Identification of mtDNA mutations in human cancer. Methods Mol Biol. 2002, 197: 107-117.

Carew JS, Zhou Y, Albitar M, Carew JD, Keating MJ, Huang P: Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia. 2003, 17: 1427-1447. 10.1038/sj.leu.2403043.

Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunkett W, Huang P: Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006, 175: 913-932. 10.1083/jcb.200512100

Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM: p53 regulates mitochondrial respiration. Science. 2006, 312: 1650-1653. 10.1126/science.1126863

Bensaad K, Tsuruta A, Selak MA, Vidal MN, Bartrons R, Gottlieb E, Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006, 126: 117-120. 10.1016/j.cell.2006.05.036.

Kroemer G, Pouyssegur J: Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008, 13: 472-482. 10.1016/j.ccr.2008.05.005

Christofk HR, Heiden Vander MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452: 230-3. 10.1038/nature06734

Ellis RJ: Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. 2001, 26: 597-604. 10.1016/S0968-0004(01)01938-7

Hall D, Minton AP: Macromolecular crowding: qualitative and semi-quantitative successes, quantitative challenges. Biochim Biophys Acta. 2003, 1649: 127-39.

Sinclair R: Response of mammalian cells to controlled growth rates in steady-state continuous culture. In Vitro. 1974, 10: 295-305. 10.1007/BF02615311

Gambhir A, Korke R, Lee J, Fu P-C, Europa A, Hu W-S: Analysis of cellular metabolism of hybridoma cells at distinct physiological states. J Biosci Bioeng. 2003, 95: 317-327.

Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA: Creation of human tumour cells with defined genetic elements. Nature. 1999, 400: 464-468. 10.1038/22780

Ramanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005, 102: 5992-7. 10.1073/pnas.0502267102

de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JA, Wieringa B: Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer. 2009, 8: 54- 10.1186/1476-4598-8-54

Sweeney MJ, Ashmore J, Morris HP, Weber G: Comparative biochemistry of hepatomas. IV. Isotope studies of glucose and fructose metabolism in liver tumors of different growth rates. Cancer Res. 1963, 23: 995-1002.

Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, Chi CW, Tam TN, Wei YH: Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci. 2005, 1042: 109-22. 10.1196/annals.1338.011

Lin CS, Wang LS, Tsai CM, Wei YH: Low copy number and low oxidative damage of mitochondrial DNA are associated with tumor progression in lung cancer tissues after neoadjuvant chemotherapy. Interact Cardiovasc Thorac Surg. 2008, 7: 954-958. 10.1510/icvts.2008.177006

Michelakis ED, Webster L, Mackey JR: Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008, 99: 989-994. 10.1038/sj.bjc.6604554

Newsholme EA, Crabtee B, Ardawi MSM: The role of high glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep. 1985, 5: 393-400. 10.1007/BF01116556

DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7: 11-20. 10.1016/j.cmet.2007.10.002

Frick O, Wittmann C: Characterization of metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microbial Cell Factories. 2005, 4: 30- 10.1186/1475-2859-4-30

Vazquez A, Beg QK, de Menezes MA, Ernst J, Bar-Joseph Z, Barabási A-L, Boros LG, Oltvai ZN: Impact of the solvent capacity constraint on E. coli metabolism. BMC Systems Biol. 2008, 2: 7-10.1186/1752-0509-2-7.

Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabási A-L, Oltvai ZN: Intracellular crowding of macromolecules defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci USA. 2007, 104: 12663-8. 10.1073/pnas.0609845104

Scopes RK: Studies of reconstituted muscle glycolytic system. Biochem J. 1973, 134: 197-208.

Lee B: Calculation of volume fluctuations for globular protein models. Proc Natl Acad Sci USA. 1983, 80: 622-626. 10.1073/pnas.80.2.622

Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG: Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol. 1992, 73: 2004-10.

Short KR, Nygren J, Barazzoni R, Levine J, Nair KS: T3 increases mitochondrial production in oxidative muscle despite increased expression of UCP2 and -3. Am J Physiol Endocrinol Metab. 2001, 280: E761-E767.

Hou X-Y, Green S, Askew CD, Barker G, Green A, Walker PL: Skeletal muscle mitochondrial ATP production rate and walking performance in peripherical arterial disease. Clin Physiol Func Im. 2002, 22: 226-232. 10.1046/j.1475-097X.2002.00423.x.

Glass U, Bahr FG: Quantitative study of mitochondria in rat liver. J Cell Biol. 1966, 29: 507-523. 10.1083/jcb.29.3.507

Schwerzmann K, Hoppeler H, Kayar SR, Wibel ER: Oxidative capacity of muscle mitochondria. Proc Natl Acad Sci USA. 1989, 86: 1583-1587. 10.1073/pnas.86.5.1583

Blaker GJ, Pirt SJ: The uptake of vitamins by mouse fibroblast cells (strain LS) during growth in a chemically defined medium. J Cell Sci. 1971, 8: 709-725.

Sen S, Srienc F, Hu W-S: Distinct volume distribution of viable and non-viable hybridoma cells: A flow cytometric study. Cytotechnology. 1989, 2: 85-94. 10.1007/BF00386140.