Caspase-9, caspase-3 và caspase-7 có vai trò khác nhau trong quá trình tự chết tế bào

BMC Cell Biology - Tập 14 Số 1 - 2013
Matthew Brentnall1,2, Luis Rodriguez-Menocal3, Rebeka Ladron De Guevara3, Enriqué Cepero3, Lawrence Boise1
1Departments of Hematology and Medical Oncology and Cell Biology, Winship Cancer Institute of Emory University, Atlanta, USA
2Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, USA
3Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA

Tóm tắt

Tóm tắtGiới thiệu

Apoptosis là một hình thức chết tế bào có lập trình được điều hòa bởi gia đình protein Bcl-2 và gia đình protein caspase. Đường truyền caspase chịu trách nhiệm thực hiện cái chết tế bào sau khi giải phóng cytochromec đã được mô tả rõ ràng; tuy nhiên, vai trò khác biệt của các caspase-9, -3 và -7 trong quá trình này vẫn chưa được xác định hoàn toàn.

Kết quả

Trong nghiên cứu này, chúng tôi chứng minh một số chức năng độc đáo cho mỗi caspase trong quá trình chết tế bào. Việc ức chế đặc hiệu caspase-9 cho phép giải phóng cytochromec một cách hiệu quả, nhưng ngăn cản sự thay đổi hình thái của ti thể và sản xuất ROS. Chúng tôi cho thấy rằng caspase-9 có thể cắt Bid thành tBid tại axit amin 59 và sự cắt này của Bid là cần thiết cho việc sản xuất ROS sau khi rút serum. Chúng tôi cũng chứng minh rằng các MEFs thiếu caspase-3 ít nhạy cảm hơn với kích thích cái chết tế bào nội tại, nhưng có sản xuất ROS cao hơn. Ngược lại, các MEFs thiếu caspase-7 không kháng lại cái chết tế bào nội tại, nhưng vẫn gắn kết với ECM.

Kết luận

Tổng hợp dữ liệu này cho thấy caspase-9 là cần thiết cho sự thay đổi hình thái ti thể và sản xuất ROS qua việc cắt và kích hoạt Bid thành tBid. Sau khi được kích hoạt bởi caspase-9, caspase-3 ức chế sản xuất ROS và là cần thiết cho việc thực hiện apoptosis một cách hiệu quả, trong khi caspase-7 hiệu ứng là cần thiết cho việc tách biệt tế bào apoptotic.

Từ khóa


Tài liệu tham khảo

Danial NN, Korsmeyer SJ: Cell death: critical control points. Cell. 2004, 116 (2): 205-219. 10.1016/S0092-8674(04)00046-7.

Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19 (1): 107-120. 10.1038/cdd.2011.96.

Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ: tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000, 14 (16): 2060-2071.

Eskes R, Desagher S, Antonsson B, Martinou JC: Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000, 20 (3): 929-935. 10.1128/MCB.20.3.929-935.2000.

Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001, 292 (5517): 727-730. 10.1126/science.1059108.

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997, 91 (4): 479-489. 10.1016/S0092-8674(00)80434-1.

Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES: Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. 1998, 1 (7): 949-957. 10.1016/S1097-2765(00)80095-7.

Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA: Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 1998, 12 (6): 806-819. 10.1101/gad.12.6.806.

Shi Y: Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002, 9 (3): 459-470. 10.1016/S1097-2765(02)00482-3.

Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell. 2002, 2 (1): 55-67. 10.1016/S1534-5807(01)00116-2.

Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G: Mitochondrial control of nuclear apoptosis. J Exp Med. 1996, 183 (4): 1533-1544. 10.1084/jem.183.4.1533.

Martin SJ, Green DR: Protease activation during apoptosis: death by a thousand cuts?. Cell. 1995, 82 (3): 349-352. 10.1016/0092-8674(95)90422-0.

Cepero E, King AM, Coffey LM, Perez RG, Boise LH: Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene. 2005, 24 (42): 6354-6366.

Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES: Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999, 144 (2): 281-292. 10.1083/jcb.144.2.281.

Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D: Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem. 1998, 273 (42): 27084-27090. 10.1074/jbc.273.42.27084.

Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP: A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997, 272 (29): 17907-17911. 10.1074/jbc.272.29.17907.

Lakhani SA, Masud A, Kuida K, Porter GA, Booth CJ, Mehal WZ, Inayat I, Flavell RA: Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science. 2006, 311 (5762): 847-851. 10.1126/science.1115035.

Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ: Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA. 2008, 105 (35): 12815-12819. 10.1073/pnas.0707715105.

Gregory CD, Pound JD: Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis. 2010, 15 (9): 1029-1049. 10.1007/s10495-010-0485-9.

Johnson BW, Cepero E, Boise LH: Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J Biol Chem. 2000, 275 (40): 31546-31553.

Saraste M: Oxidative phosphorylation at the fin de siecle. Science. 1999, 283 (5407): 1488-1493. 10.1126/science.283.5407.1488.

Cai J, Jones DP: Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem. 1998, 273 (19): 11401-11404. 10.1074/jbc.273.19.11401.

Wen LP, Fahrni JA, Troie S, Guan JL, Orth K, Rosen GD: Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem. 1997, 272 (41): 26056-26061. 10.1074/jbc.272.41.26056.

Johnson BW, Boise LH: Bcl-2 and caspase inhibition cooperate to inhibit tumor necrosis factor-alpha-induced cell death in a Bcl-2 cleavage-independent fashion. J Biol Chem. 1999, 274 (26): 18552-18558. 10.1074/jbc.274.26.18552.

Swift S, Lorens J, Achacoso P, Nolan GP: Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Curr Protoc Immunol. 2001, Chapter 10: Unit 10 17C-