Carleson measures and the boundedness of singular integral operators on Q-type spaces related to weights

Springer Science and Business Media LLC - Tập 13 - Trang 1-32 - 2021
Xuan Chen1, Pengtao Li2, Zengjian Lou3
1Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau
2School of Mathematics and Statistics, Qingdao University, Qingdao, China
3Department of Mathematics, Shantou University, Shantou, China

Tóm tắt

In this paper, by the aid of the Poisson integral, we establish a Carleson type characterization of Q type spaces $$Q^{p}_{{\mathcal {K}}}({\mathbb {R}}^{n})$$ $$(n\ge 1)$$ with weight K. As an application, we prove that convolution singular integral operators are bounded on $$Q^{p}_{{\mathcal {K}}}({\mathbb {R}}^{n})$$ for $$n\ge 2$$ .

Tài liệu tham khảo

Aulaskari, R., Stegenga, D., Xiao, J.: Some subclasses of BMOA and their characterization in terms of Carleson measures. Rocky Mt. J. Math. 26, 485–506 (1996) Aulaskari, R., Wulan, H., Zhao, R.: Carleson measure and some classes of meromorphic functions. Proc. Am. Math. Soc. 128, 2329–2335 (2000) Bao, G.: Characterizations of \(Q_{K}\) Spaces of Several Real Variables. PhD thesis, Shantou University, China (2014) Bao, G., Wulan, H.: John–Nirenberg type inequality and wavelet characterization for \(Q_{K}({\mathbb{R}}^{n})\) spaces (in Chinese). Sci. China Math. 45, 1833–1846 (2015) Dafni, G., Xiao, J.: Some new tent spaces and duality theorem for fractional Carleson measures and \(Q_{\alpha }({\mathbb{R}}^n)\). J. Funct. Anal. 208, 377–422 (2004) Essén, M., Janson, S., Peng, L., Xiao, J.: \(Q\) spaces of several real variables. Indiana Univ. Math. J. 49, 575–615 (2000) Essén, M., Wulan, H.: On analytic and meromorphic function and spaces of \(Q_{K}\)-type. Ill. J Math. 46, 1233–1258 (2002) Essén, M., Wulan, H., Xiao, J.: Several function-theoretic characterizations of Möbius invariant \(Q_{{\cal{K}}}\) spaces. J. Funct. Anal. 230, 78–115 (2006) Han, F., Li, P.: Harmonic extension of \(Q_{\mathcal{K}}\) type spaces via regular wavelets. Complex Var. Elliptic Equ. 65, 2008–2025 (2020). https://doi.org/10.1080/17476933.2019.1684484 Koskela, P., Xiao, J., Zhang, Y., Zhou, Y.: A quasiconformal composition problem for the Q-spaces. J. Eur. Math. Soc. 19, 1159–1187 (2017) Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific Publishing, River Edge (2003) Li, P., Zhai, Z.: Well-posedness and regularity of generalized Naiver–Stokes equations in some critical Q-spaces. J. Funct. Anal. 259, 2457–2519 (2010) Li, P., Zhai, Z.: Riesz transforms on Q-type spaces with application to quasi-geostrophic equation. Taiwan. J. Math. 16, 2107–2132 (2012) Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) Trefethen, L., Bau, D., III.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997) Wu, Z., Xie, C.: Q space and Morrey spaces. J. Funct. Anal. 201, 282–297 (2003) Wulan, H.: On some classes of meromorphic functions. Ann. Acad. Sci. Fenn. Math. Diss. 116, 1–57 (1998) Xiao, J.: Homothetic variant of fractional Sobolev space with application to Navier–Stokes system. Dyn. PDE 2, 227–245 (2007) Yang, Q., Qian, T., Li, P.: Fefferman–Stein decomposition for Q-spaces and micro-local quantities. Nonlinear Anal. 145, 24–48 (2016) Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 2760–2809 (2008) Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Heidelberg (2010)