Carleson measures and the boundedness of singular integral operators on Q-type spaces related to weights
Tóm tắt
In this paper, by the aid of the Poisson integral, we establish a Carleson type characterization of Q type spaces
$$Q^{p}_{{\mathcal {K}}}({\mathbb {R}}^{n})$$
$$(n\ge 1)$$
with weight K. As an application, we prove that convolution singular integral operators are bounded on
$$Q^{p}_{{\mathcal {K}}}({\mathbb {R}}^{n})$$
for
$$n\ge 2$$
.
Tài liệu tham khảo
Aulaskari, R., Stegenga, D., Xiao, J.: Some subclasses of BMOA and their characterization in terms of Carleson measures. Rocky Mt. J. Math. 26, 485–506 (1996)
Aulaskari, R., Wulan, H., Zhao, R.: Carleson measure and some classes of meromorphic functions. Proc. Am. Math. Soc. 128, 2329–2335 (2000)
Bao, G.: Characterizations of \(Q_{K}\) Spaces of Several Real Variables. PhD thesis, Shantou University, China (2014)
Bao, G., Wulan, H.: John–Nirenberg type inequality and wavelet characterization for \(Q_{K}({\mathbb{R}}^{n})\) spaces (in Chinese). Sci. China Math. 45, 1833–1846 (2015)
Dafni, G., Xiao, J.: Some new tent spaces and duality theorem for fractional Carleson measures and \(Q_{\alpha }({\mathbb{R}}^n)\). J. Funct. Anal. 208, 377–422 (2004)
Essén, M., Janson, S., Peng, L., Xiao, J.: \(Q\) spaces of several real variables. Indiana Univ. Math. J. 49, 575–615 (2000)
Essén, M., Wulan, H.: On analytic and meromorphic function and spaces of \(Q_{K}\)-type. Ill. J Math. 46, 1233–1258 (2002)
Essén, M., Wulan, H., Xiao, J.: Several function-theoretic characterizations of Möbius invariant \(Q_{{\cal{K}}}\) spaces. J. Funct. Anal. 230, 78–115 (2006)
Han, F., Li, P.: Harmonic extension of \(Q_{\mathcal{K}}\) type spaces via regular wavelets. Complex Var. Elliptic Equ. 65, 2008–2025 (2020). https://doi.org/10.1080/17476933.2019.1684484
Koskela, P., Xiao, J., Zhang, Y., Zhou, Y.: A quasiconformal composition problem for the Q-spaces. J. Eur. Math. Soc. 19, 1159–1187 (2017)
Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific Publishing, River Edge (2003)
Li, P., Zhai, Z.: Well-posedness and regularity of generalized Naiver–Stokes equations in some critical Q-spaces. J. Funct. Anal. 259, 2457–2519 (2010)
Li, P., Zhai, Z.: Riesz transforms on Q-type spaces with application to quasi-geostrophic equation. Taiwan. J. Math. 16, 2107–2132 (2012)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Trefethen, L., Bau, D., III.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)
Wu, Z., Xie, C.: Q space and Morrey spaces. J. Funct. Anal. 201, 282–297 (2003)
Wulan, H.: On some classes of meromorphic functions. Ann. Acad. Sci. Fenn. Math. Diss. 116, 1–57 (1998)
Xiao, J.: Homothetic variant of fractional Sobolev space with application to Navier–Stokes system. Dyn. PDE 2, 227–245 (2007)
Yang, Q., Qian, T., Li, P.: Fefferman–Stein decomposition for Q-spaces and micro-local quantities. Nonlinear Anal. 145, 24–48 (2016)
Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 2760–2809 (2008)
Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Heidelberg (2010)