Cardiovascular development in embryos of the American alligator Alligator mississippiensis: effects of chronic and acute hypoxia
Tóm tắt
Chronic hypoxic incubation is a common tool used to address the plasticity of morphological and physiological characteristics during vertebrate development. In this study chronic hypoxic incubation of embryonic American alligators resulted in both morphological (mass) and physiological changes. During normoxic incubation embryonic mass, liver mass and heart mass increased throughout the period of study, while yolk mass fell. Chronic hypoxia(10%O2) resulted in a reduced embryonic mass at 80% and 90% of incubation. This reduction in embryonic mass was accompanied by a relative enlargement of the heart at 80% and 90% of incubation, while relative embryonic liver mass was similar to the normoxic group. Normoxic incubated alligators maintained a constant heart rate during the period of study, while mean arterial pressure rose continuously. Both levels of hypoxic incubation(15% and 10%O2) resulted in a lower mean arterial pressure at 90%of incubation, while heart rate was lower in the 10%O2 group only. Acute (5 min) exposure to 10%O2 in the normoxic group resulted in a biphasic response, with a normotensive bradycardia occurring during the period of exposure and a hypertensive tachycardic response occurring during recovery. The embryos incubated under hypoxia also showed a blunted response to acute hypoxic stress. In conclusion, the main responses elicited by chronic hypoxic incubation, namely, cardiac enlargement, blunted hypoxic response and systemic vasodilation, may provide chronically hypoxic embryos with a new physiological repertoire for responding to hypoxia.
Từ khóa
Tài liệu tham khảo
Ackerman, R. A. (1977). The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). Resp. Physiol.31,19-38.
Ackerman, R. A. (1981). Growth and gas exchange of embryonic sea turtles (Chelonia, Caretta). Copeia4, 757-765.
Altimiras, J. and Crossley, D. A., II (2000). Control of blood pressure mediated by baroreflex changes of heart rate in the chicken embryo (Gallus gallus). Am. J. Physiol.278,R980-R986.
Altimiras, J., Franklin, C. E. and Axelsson, M.(1998). Relationships between blood pressure and heart rate in the saltwater crocodile Crocodylus porosus. J. Exp. Biol.201,2235-2242.
Asson-Batres, M. A., Stock, M. K., Hare, J. F. and Metcalfe,J. (1989). O2 effect on composition of chick embryonic heart and brain. Resp. Physiol.77,101-110.
Booth, D. T. (2000). The effect of hypoxia on oxygen consumption of embryonic estuarine crocodiles (Crocodylus porosus). J. Herpetol.34,478-481.
Carey, C., Thompson, E. L., Vleck, C. M. and James, F. C.(1982). Avian reproduction over an altitudinal gradient:incubation period, hatchling mass, and embryonic oxygen consumption. Auk99,710-718.
Corona, T. B. and Warburton, S. J. (2000). Regional hypoxia elicits regional changes in chorioallantoic membrane vascular density in alligator but not chicken embryos. Comp. Biochem. Physiol.125A,57-61.
Crossley, D. A., II and Altimiras, J. (2000). Ontogeny of autonomic control of cardiovascular function in the domestic chicken Gallus gallus. Am. J. Physiol.279,R1091-R1098.
Crossley, D. A., II, Burggren, W. W. and Altimiras, J.(2003a). Cardiovascular regulation during hypoxia in embryos of the domestic chicken Gallus gallus. Am. J. Physiol.284,R219-R226.
Crossley, D. A., II, Hicks, J. W. and Altimiras, J.(2003b). Ontogeny of baroreflex regulation in the American alligator Alligator mississippiensis. J. Exp. Biol.206,2895-2902.
Deeming, D. C. and Ferguson, M. W. J. (1989). Effects of incubation temperature on growth and development of embryos of Alligator mississippiensis. J. Comp. Physiol. B159,183-193.
Deeming, D. C. and Ferguson, M. W. J. (1991). Reduction in eggshell conductance to respiratory gases has no effect on sex determination in Alligator mississippiensis. Copeia1991,240-243.
Dusseau, J. W. and Hutchins, P. M. (1988). Hypoxia-induced angiogenesis in chick chorioallantoic membranes: a role for adenosine. Resp. Physiol.71, 33-44.
Dusseau, J. W. and Hutchins, P. M. (1989). Microvascular responses to chronic hypoxia by the chick chorioallantoic membrane: a morphometric analysis. Microvasc. Res.37,138-147.
Dzialowski, E. M., Von Plettenberg, D., Elmonoufy, N. A. and Burggren, W. W. (2002). Chronic hypoxia alters the physiological and morphological trajectories of developing chicken embryos. Comp. Biochem. Physiol.131A,713-724.
Ferguson, M. W. J. (1985). Reproductive biology and embryology of the crocodilians. In Biology of the Reptilia. Vol. 14, Development (ed. C. Gans, F. Billett and P. F. A. Maderson), pp. 329-491. New York: John Wiley and Sons.
Gagnon, R., Murotsuki, J., Challis, J. R. G., Fraher, L. and Richardson, B. S. (1997). Fetal sheep endocrine responses to sustained hypoxemic stress after chronic fetal placental embolization. Am. J. Physiol.272,E817-E823.
Giussani, D. A., Spencer, J. A. D., Moore, P. J., Bennet, L. and Hanson, M. A. (1993). Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J. Physiol. Lond.461,431-449.
Giussani, D. A., Spencer, J. A. D. and Hanson, M. A.(1994). Fetal cardiovascular reflex responses to hypoxaemia. Fetal Mat. Med. Rev.6,17-37.
Han, X., Light, P. E., Giles, W. R. and Franch, R. J.(1996). Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. J. Physiol. Lond.490,337-350.
Handrich, Y. and Girard, H. (1985). Gas diffusive conductance of sea-level hen eggs incubated at 2900m altitude. Resp. Physiol.60,237-252.
Kam, Y.-C. (1993). Physiological effects of hypoxia on metabolism and growth of turtle embryos. Resp. Physiol.92,127-138.
Lindgren, I. (2004). Effects of chronic hypoxia on embryonic and organ growth during the last week of development in broiler chickens. Honours thesis LiU-IFM-Biol-Ex-1128, Department of Physics and Measurement Technology, IFM, University of Linköping,Sweden.
McCutcheon, I. E., Metcalfe, J., Metzenberg, A. B. and Ettinger,T. (1982). Organ growth in hyperoxic and hypoxic chick embryos. Resp. Physiol.50,153-163.
Metcalfe, J., Stock, M. K. and Ingermann, R. L.(1984). The effect of oxygen on growth and development of the chick embryo. In Respiration and Metabolism of Embryonic Vertebrates (ed. R. S. Seymour), pp.205-219. Boston: Dr W. Junk Publishers.
Miller, S. L., Green, L. R., Peebles, D. M., Hanson, M. A. and Blanco, C. E. (2002). Effects of chronic hypoxia and protein malnutrition on growth in the developing chick. Am. J. Obstet. Gynecol.186,261-267.
Mulder, A. L. M., Van Golde, J. M. C. G., Van Goor, A. A. C.,Giussani, D. A. and Blanco, C. E. (2000). Developmental changes in plasma catecholamine concentrations during normoxia and acute hypoxia in the chick embryo. J. Physiol. Lond.527,593-599.
Mulder, A. L. M., Van Goor, C. A., Giussani, D. A. and Blanco,C. E. (2001). α-adrenergic contribution to the cardiovascular response to acute hypoxemia in the chick embryo. Am. J. Physiol.281,R2004-R2010.
Packard, G. C. and Packard, M. J. (2002). Wetness of the nest environment influences cardiac development in pre- and post-natal snapping turtles (Chelydra serpentina). Comp. Biochem. Physiol.132A,905-912.
Plummer, M. V. (1976). Some aspects of nesting success in the turtle, Trionyx muticus. Herpetol.32,353-359.
Rouwet, E. V., Tintu, A. N., Schellings, M. W. M., Van Bilsen,M., Lutgens, E., Hofstra, L., Slaaf, D. W., Ramsay, G. and Le Noble, F. A. C. (2002). Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation105,2791-2796.
Ruijtenbeek, K., Le Noble, F. A. C., Janssen, G. M. J., Kessels,C. G. A., Fazzi, G. E., Blanco, C. E. and De Mey, J. G. R.(2000). Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation102,2892-2897.
Seymour, R. S., Vleck, D. and Vleck, C. M.(1986). Gas exchange in the incubation mounds of megapode birds. J. Comp. Physiol. B156,772-782.
Snyder, G. K., Black, C. P. and Birchard, G. F.(1982). Development and metabolism during hypoxia in embryos of high altitude Anser indicus versus sea level Branta canadensis geese. Physiol. Zool.55,113-123.
Tchirikov, M., Kertschanska, S. and Schröder, H. J.(2003). Differential effects of catecholamines on vascular rings from ductus venosus and intrahepatic veins of fetal sheep. J. Physiol. Lond.548,519-526.