Cardiac-targeted PIASy gene silencing mediates deSUMOylation of caveolin-3 and prevents ischemia/reperfusion-induced Nav1.5 downregulation and ventricular arrhythmias
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dong C, Wang Y, Ma A, Wang T. Life cycle of the cardiac voltage-gated sodium channel Nav1.5. Front Physiol. 2020;11:609733.
Nathan S, Gabelli SB, Yoder JB, Srinivasan L, Aldrich RW, Tomaselli GF, et al. Structural basis of cytoplasmic NaV1.5 and NaV1.4 regulation. J Gen Physiol. 2021;153(1):e202012722.
El RM, Coles S, Musa H, Stevens TL, Wallace MJ, Murphy NP, et al. Altered expression of zonula occludens-1 affects cardiac Na+ channels and increases susceptibility to ventricular arrhythmias. Cells. 2022;11(4):665.
Zaklyazminskaya E, Dzemeshkevich S. The role of mutations in the SCN5A gene in cardiomyopathies. Biochim Biophys Acta. 2016;1863(7 Pt B):1799–805.
Yang HQ, Perez-Hernandez M, Sanchez-Alonso J, Shevchuk A, Gorelik J, Rothenberg E, et al. Ankyrin-G mediates targeting of both Na+ and KATP channels to the rat cardiac intercalated disc. Elife. 2020;9:e52373.
Turan NN, Moshal KS, Roder K, Baggett BC, Kabakov AY, Dhakal S, et al. The endosomal trafficking regulator LITAF controls the cardiac Nav1.5 channel via the ubiquitin ligase NEDD4–2. J Biol Chem. 2020;295(52):18148–59.
Zhou J, Wang L, Zuo M, Wang X, Ahmed AS, Chen Q, et al. Cardiac sodium channel regulator MOG1 regulates cardiac morphogenesis and rhythm. Sci Rep. 2016;6:21538.
Matamoros M, Perez-Hernandez M, Guerrero-Serna G, Amoros I, Barana A, Nunez M, et al. Nav1.5 N-terminal domain binding to alpha1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovasc Res. 2016;110(2):279–90.
Eichel CA, Beuriot A, Chevalier MY, Rougier JS, Louault F, Dilanian G, et al. Lateral membrane-specific MAGUK CASK down-regulates NaV1.5 channel in cardiac myocytes. Circ Res. 2016;119(4):544–56.
Balse E, Eichel C. The cardiac sodium channel and its protein partners. Handb Exp Pharmacol. 2018;246:73–99.
Schilling JM, Horikawa YT, Zemljic-Harpf AE, Vincent KP, Tyan L, Yu JK, et al. Electrophysiology and metabolism of caveolin-3-overexpressing mice. Basic Res Cardiol. 2016;111(3):28.
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and physiological implications of cooperative gating of clustered ion channels. Physiol Rev. 2022;102(3):1159–210.
Cheng J, Valdivia CR, Vaidyanathan R, Balijepalli RC, Ackerman MJ, Makielski JC. Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J Mol Cell Cardiol. 2013;61:102–10.
Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114(20):2104–12.
Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 2010;428(2):133–45.
Sahin U, de The H, Lallemand-Breitenbach V. Sumoylation in physiology, pathology and therapy. Cells. 2022;11(5):814.
Fuhs SR, Insel PA. Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization. J Biol Chem. 2011;286(17):14830–41.
Palvimo JJ. PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem Soc Trans. 2007;35(Pt 6):1405–8.
Yan Y, Ollila S, Wong I, Vallenius T, Palvimo JJ, Vaahtomeri K, et al. SUMOylation of AMPKalpha1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun. 2015;6:8979.
Diezko R, Suske G. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor gamma (PPARgamma) activation function 1 (AF1) domain. PLoS One. 2013;8(6):e66947.
Wei X, Zhu A, Zhang Y, Yao S, Mao W. Pre- and delayed treatments with ranolazine ameliorate ventricular arrhythmias and Nav1.5 downregulation in ischemic/reperfused rat hearts. J Cardiovasc Pharmacol. 2016;68(4):269–79.
Louch WE, Sheehan KA, Wolska BM. Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol. 2011;51(3):288–98.
Piras BA, O’Connor DM, French BA. Systemic delivery of shRNA by AAV9 provides highly efficient knockdown of ubiquitously expressed GFP in mouse heart, but not liver. PLoS One. 2013;8(9):e75894.
Bacchelli E, Loi E, Cameli C, Moi L, Vega-Benedetti AF, Blois S, et al. Analysis of a sardinian multiplex family with autism spectrum disorder points to post-synaptic density gene variants and identifies CAPG as a functionally relevant candidate gene. J Clin Med. 2019;8(2):212.
Wei M, Ma Y, Shen L, Xu Y, Liu L, Bu X, et al. NDRG2 regulates adherens junction integrity to restrict colitis and tumourigenesis. EBioMedicine. 2020;61:103068.
Curtis MJ, Walker MJ. Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res. 1988;22(9):656–65.
Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. Therapeutic potential of targeting the SUMO pathway in cancer. Cancers (Basel). 2021;13(17):4402.
Chaanine AH, Nonnenmacher M, Kohlbrenner E, Jin D, Kovacic JC, Akar FG, et al. Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure. Gene Ther. 2014;21(4):379–86.
Ni L, Scott LJ, Campbell HM, Pan X, Alsina KM, Reynolds J, et al. Atrial-specific gene delivery using an adeno-associated viral vector. Circ Res. 2019;124(2):256–62.
Yang Y, Ma Z, Hu W, Wang D, Jiang S, Fan C, et al. Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2016;111(4):45.
Zhu A, Wei X, Zhang Y, You T, Yao S, Yuan S, et al. Propofol provides cardiac protection by suppressing the proteasome degradation of Caveolin-3 in ischemic/reperfused rat hearts. J Cardiovasc Pharmacol. 2017;69(3):170–7.
Vaidyanathan R, Reilly L, Eckhardt LL. Caveolin-3 microdomain: arrhythmia implications for potassium inward rectifier and cardiac sodium channel. Front Physiol. 2018;9:1548.
Marangoni S, Di Resta C, Rocchetti M, Barile L, Rizzetto R, Summa A, et al. A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovasc Res. 2011;91(4):606–16.
Chang YC, Oram MK, Bielinsky AK. SUMO-targeted ubiquitin ligases and their functions in maintaining genome stability. Int J Mol Sci. 2021;22(10):5391.
Cai Q, Verma SC, Kumar P, Ma M, Robertson ES. Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS One. 2010;5(3):e9720.
Mabb AM, Wuerzberger-Davis SM, Miyamoto S. PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol. 2006;8(9):986–93.
Chen Y, Liu Z, Chen H, Huang X, Huang X, Lei Y, et al. p53 SUMOylation mediates aopp-induced endothelial senescence and apoptosis evasion. Front Cardiovasc Med. 2021;8:795747.
Han Y, Huang X, Cao X, Li Y, Gao L, Jia J, et al. SENP3-mediated TIP60 deSUMOylation is required for DNA-PKcs activity and DNA damage repair. MedComm. 2022;3(2):e123.
Glynn P, Musa H, Wu X, Unudurthi SD, Little S, Qian L, et al. Voltage-gated sodium channel phosphorylation at ser571 regulates late current, arrhythmia, and cardiac function in vivo. Circulation. 2015;132(7):567–77.
Iqbal SM, Lemmens-Gruber R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. Acta Physiol (Oxf). 2019;225(3):e13210.
Hallaq H, Wang DW, Kunic JD, George AJ, Wells KS, Murray KT. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. Am J Physiol Heart Circ Physiol. 2012;302(3):H782–9.
Zhao C, Wang L, Ma X, Zhu W, Yao L, Cui Y, et al. Cardiac Nav1.5 is modulated by ubiquitin protein ligase E3 component n-recognin UBR3 and 6. J Cell Mol Med. 2015;19(9):2143–52.
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and non-genomic regulatory mechanisms of the cardiac sodium channel in cardiac arrhythmias. Int J Mol Sci. 2022;23(3):1381.
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol. 2022;600(12):2835–51.