Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Achanzar WE, Webber MM, Waalkes MP (2002) Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells. Prostate 52:236–244
Andersen A, Berge SR, Engeland A, Norseth T (1996) Exposure to nickel compounds and smoking in relation to incidence of lung and nasal cancer among nickel refinery workers. Occup Environ Med 53:708–713
Ariza ME, Williams MV (1996) Mutagenesis of AS52 cells by low concentrations of lead(II) and mercury(II). Environ Mol Mutagen 27:30–33
Ariza ME, Williams MV (1999) Lead and mercury mutagenesis: type of mutation dependent upon metal concentration. J Biochem Mol Toxicol 13:107–112
Ariza ME, Bijur GN, Williams MV (1998) Lead and mercury mutagenesis: role of H2O2, superoxide dismutase, and xanthine oxidase. Environ Mol Mutagen 31:352–361
Arslan P, Beltrame M, Tomasi A (1987) Intracellular chromium reduction. Biochim Biophys Acta. 931:10–15
Asmuss M, Mullenders LH, Eker A, Hartwig A (2000) Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis 21:2097–2104
ATSDR (Agency for Toxic Substances Disease Registry) (2000) Toxicological profile of chromium. US Department of Health and Human Services, Public Health Services Atlanta, USA
Bal W, Liang R, Lukszo J, Lee SH, Dizdaroglu M, Kasprzak KS (2000) Ni(II) specifically cleaves the C-terminal tail of the major variant of histone H2A and forms an oxidative damage-mediating complex with the cleaved-off octapeptide. Chem Res Toxicol 13:616–624
Bataineh H, al-Hamood MH, Elbetieha A, Bani Hani I (1997) Effect of long-term ingestion of chromium compounds on aggression, sex behavior and fertility in adult male rat. Drug Chem Toxicol 20:133–149
Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA (2002) Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis 23:335–339
Benbrahim-Tallaa L, Liu J, Webber MM, Waalkes MP (2007) Estrogen signaling and disruption of androgen metabolism in acquired androgen-independence during cadmium carcinogenesis in human prostate epithelial cells. Prostate 67:135–145
Benova D, Hadjidekova V, Hristova R, Nikolova T, Boulanova M, Georgieva I, Grigorova M, Popov T, Panev T, Georgieva R, Natarajan AT, Darroudi F, Nilsson R (2002) Cytogenetic effects of hexavalent chromium in Bulgarian chromium platers. Mutat Res 514:29–38
Beyersmann D (1995) Physicochemical aspects of the interference of detrimental metal ions with normal metal metabolism. In: Berthon G (ed) Handbook on metal-ligand interactions in biological fluids. Marcel Dekker, New York, pp 813–826
Bialkowski K, Kasprzak KS (1998) A novel assay of 8-oxo-2’-deoxyguanosine 5’-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity in cultured cells and its use for evaluation of cadmium (II) inhibition of this activity. Nucleic Acids Res 26:3194–3201
Brama M, Gnessi L, Basciani S, Cerulli N, Politi L, Spera G, Mariani S, Cherubini S, Scotto d′Abusco A, Scandurra R, Migliaccio S (2007) Cadmium induces mitogenic signaling in breast cancer cell by an ERα-dependent mechanism. Mol Cell Endocrinol 264:102–108
Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89:431–437
Cheung WY (1984) Calmodulin: its potential role in cell proliferation and heavy metal toxicity. Fed Proc 43:2995–2999
Chuang SM, Yang JL (2001) Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells. Mol Cell Biochem 222:85–95
Chubatsu LS, Gennari M, Meneghini R (1992) Glutathione is the antioxidant responsible for resistance to oxidative stress in V79 Chinese hamster fibroblasts rendered resistant to cadmium. Chem Biol Interact 82:99–110
Connett PH, Wetterhahn KE (1983) In vitro reaction of the carcinogen chromate with cellular thiols and carboxylic acids. J Am Chem Soc 107:4282–4288
Costa M, Mollenhauer HH (1980) Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake. Science 209:515–517
Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S. (2006) Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol Sci 91:372–381
Dally H, Hartwig A (1997) Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis 18:1021–1026
De Boeck M, Lison D, Kirsch-Volders M (1998) Evaluation of the in vitro direct and indirect genotoxic effects of cobalt compounds using the alkaline comet assay. Influence of interdonor and interexperimental variability. Carcinogenesis 19:2021–2029
De Boeck M, Lombaert N, de Backer S, Finsy R, Lison D, Kirsch-Volders M (2003) In vitro effects of different combinations of cobalt and metallic carbide particles. Mutagenesis 18:177–186
De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds. A review. Mutat Res 238:99–172
De Flora S, Iltcheva M, Balansky RM (2006) Oral chromium(VI) does not affect the frequency of micronuclei in hematopoietic cells of adult mice and of transplacentally exposed fetuses. Mutat Res 610:38–47
DFG (2003) Beryllium und seine anorganischen Verbindungen. In: Greim H (ed) Gesundheitsschädliche Arbeitsstoffe, toxikologisch-medizinische Begründungen von MAK-Werten. Wiley-VCH, Weinheim
DFG (2006a) Cadmium and its compounds (in the form of inhalable dusts/aerosols). In: Deutsche Forschungsgemeinschaft (ed) The MAK collection for occupational health and safety. Part I: MAK value documentations, vol 22. Wiley-VCH, Weinheim, pp 119–146
DFG (2006b) Nickel and its inorganic compounds. In: Deutsche Forschungsgemeinschaft (ed) The MAK collection for occupational health and safety. Part I: MAK value documentations, vol 22. Wiley-VCH, Weinheim, pp1–41
DFG (2006c) Vanadium und seine anorganischen Verbindungen. In: Greim H (ed) Gesundheitsschädliche Arbeitsstoffe, toxikologisch-medizinische Begründungen von MAK-Werten. Wiley-VCH, Weinheim
DFG (2007a). Deutsche Forschungsgemeinschaft: List of MAK and BAT values 2007. Wiley-VCH, Weinheim.
DFG (2007b) Antimony and its inorganic compounds (inhalable fraction). In: Deutsche Forschungsgemeinschaft (ed) The MAK collection for occupational health and safety. Part I: MAK value documentations, vol 23. Wiley-VCH, Weinheim, pp 1–73
DFG (2007c) Cobalt and its compounds (inhalable dusts or aerosols). In: Deutsche Forschungsgemeinschaft (ed) The MAK collection for occupational health and safety. Part I: MAK value documentations, vol 23. Wiley-VCH, Weinheim, pp 75–113
DFG (2007d) Hard metal containing tungsten carbide and cobalt (inhalable fraction). In: Deutsche Forschungsgemeinschaft (ed) The MAK collection for occupational health and safety. Part I: MAK value documentations, vol 23. Wiley-VCH, Weinheim, pp 217–234
Dillon CT, Lay PA, Cholewa M, Legge GJ, Bonin AM, Collins TJ, Kostka KL, Shea-McCarthy G (1997) Microprobe X-ray absorption spectroscopic determination of the oxidation state of intracellular chromium following exposure of V79 Chinese hamster lung cells to genotoxic chromium complexes. Chem Res Toxicol 10:533–535
Ding M, Li JJ, Leonard SS, Ye JP, Shi X, Colburn NH, Castranova V, Vallyathan V (1999) Vanadate-induced activation of activator protein-1: role of reactive oxygen species. Carcinogenesis 20:663–668
Doll R (1990) Report of the international committee on nickel carcinogenesis in man. Scand J Work Environ Health 16:1–82
Dunnick JK, Elwell MR, Radovsky AE, Benson JM, Hahn FF, Nikula KJ, Barr EB, Hobbs CH. (1995) Comparative carcinogenic effects of nickel subsulfide, nickel oxide, or nickel sulfate hexahydrate chronic exposures in the lung. Cancer Res 55:5251–5256
Fatur T, Tusek M, Falnoga I, Scancar J, Lah TT, Filipic M (2003) Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells. Mutat Res 529:109–116
Faux SP, Gao M, Chipman JK, Levy LS (1992) Production of 8-hydroxydeoxyguanosine in isolated DNA by chromium(VI) and chromium(V). Carcinogenesis 13:1667–1669
Fornace AJ Jr, Seres DS, Lechner JF, Harris CC (1981) DNA-protein cross-linking by chromium salts. Chem Biol Interact 36:345–354
Gao M, Binks SP, Chipman JK, Levy LS, Braithwaite RA, Brown SS (1992) Induction of DNA strand breaks in peripheral lymphocytes by soluble chromium compounds. Hum Exp Toxicol 11:77–82
Gambelunghe A, Piccinini R, Ambrogi M, Villarini M, Moretti M, Marchetti C, Abbritti G, Muzi G (2003) Primary DNA damage in chrome-plating workers. Toxicology 188:187–195
Gastaldo J, Viau M, Bencokova Z, Joubert A, Charvet AM, Balosso J, Foray N (2007) Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways. Toxicol Lett 173:201–214
Gebel T, Christensen S, Dunkelberg H (1997) Comparative and environmental genotoxicity of antimony and arsenic. Anticancer Res 17:2603–2608
Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19:1807–1819
Hanas JS, Rodgers JS, Bantle JA, Cheng YG (1999) Lead inhibition of DNA-binding mechanism of Cys(2) His(2) zinc finger proteins. Mol Pharmacol 56:982–988
Hartwig A (2001) Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3:625–634
Hartwig A (2007) Kanzerogene Metallverbindungen. Aktuelle Aspekte zu Wirkungsmechanismen und Risikobewertung. Oesterreichisches Forum Arbeitsmedizin 01/07:5–10
Hartwig A, Schwerdtle T (2002) Interactions of carcinogenic metal comounds with DNA repair processes: toxicological implications. Toxicol Lett 127:47–54
Hartwig A, Mullenders LH, Schlepegrell R, Kasten U, Beyersmann D (1994) Nickel(II) interferes with the incision step in nucleotide excision repair in mammalian cells. Cancer Res 54:4045–4051
Hartwig A, Pelzer A, Asmuss M, Burkle A (2003) Very low concentrations of arsenite suppress poly(ADP-ribosyl) ation in mammalian cells. Int J Cancer 104:1–6
Hassoun EA, Stohs SJ (1995) Chromium-induced production of reactive oxygen species, DNA single-strand breaks, nitric oxide production, and lactate dehydrogenase leakage in J774A.1 cell cultures. J Biochem Toxicol 10:315–321
Huang M, Krepkiy D, Hu W, Petering DH (2004) Zn-, Cd-, and Pb-transcription factor IIIA: properties, DNA binding, and comparison with TFIIIA-finger 3 metal complexes. J Inorg Biochem 98:775–785
International Agency for Research on Cancer (IARC) (1990) Chromium, nickel and welding. IARC monographs on the evaluation of carcinogenic risks to humans 49. IARC, Lyon, pp 49–256
International Agency for Research on Cancer (IARC) (1991) Chlorinated drinking water; chlorination byproducts; some other halogenated compounds; cobalt and cobalt compounds. IARC monographs on the evaluation of carcinogenic risks to humans 52. IARC, Lyon, pp 363–472
International Agency for Research on Cancer (IARC) (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing Industry. IARC monographs on the evaluation of carcinogenic risks to humans, vol 58. Lyon, pp 119–237
International Agency for Research on Cancer (IARC) (2006a) Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC monographs on the evaluation of carcinogenic risks to humans, vol 86. Lyon, pp 119–237
International Agency for Research on Cancer IARC (2006) Inorganic and organic lead compounds. IARC Monogr Eval Carcinog Risks Hum 87:1–471
Ivancsits S, Pilger A, Diem E, Schaffer A, Rüdiger HW (2002) Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. Mutat Res 519:25–35
Iwitzki F, Schlepegrell R, Eichhorn U, Kaina B, Beyersmann D, Hartwig A (1998) Nickel(II) inhibits the repair of O6-methylguanine in mammalian cells. Arch Toxicol. 72:681–689
Ji W, Yang L, Yu L, Yuan J, Hu D, Zhang W, Yang J, Pang Y, Li W, Lu J, Fu J, Chen J, Lin Z, Chen W, Zhuang Z. (2008) Epigenetic silencing of O6-methylguanine-DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis, 19 January 2008 (Epub ahead of print)
Jin YH, Clark AB, Slebos RJ, Al-Refal H, Taylor JA, Kunkel TA, Resnick MA, Gordenin DA (2003) Cadmium as a mutagen that acts by inhibiting mismatch repair. Nat Genet 34:326–329
Joseph P, Muchnok T, Ong TM (2001) Gene expression profile in BALB/c-3T3 cells transformed with beryllium sulfate. Mol Carcinog 32:28–35
Kasprzak KS, Hernandez L (1989) Enhancement of hydroxylation and deglycosylation of 2’-deoxyguanosine by carcinogenic nickel compounds. Cancer Res 49:5964–5968
Kasprzak KS, Zatawny TH, North SL, Riggs CW, Diwan BA, Rice JM, Dizdaroglu M (1994) Oxidative DNA base damage in renal, hepatic, and pulmonary chromatin of rats after intraperitoneal injection of cobalt(II) acetate. Chem Res Toxicol 7:329–335
Kasten U, Mullenders LHF, Hartwig A (1997) Cobalt(II) inhibits the incision and the polymerization step of nucleotide excision repair in human fibroblasts. Mut Res 383:81–89
Kesheva N, Zhou G, Spruill M, Ensell M, Ong TM (2001) Carcinogenic potential and genetic instability of beryllium sulfate in BALB/c-3T3 cells. Mol Cell Biochem 222:69–76
Kim G, Yurkow EJ (1996) Chromium induces a persistent activation of mitogen-activated protein kinases by a redox-sensitive mechanism in H4 rat hepatoma cells. Cancer Res 56:2045–2051
Kligerman AD, Doerr CL, Tennant AH, Harrington-Brock K, Allen JW, Winkfield E, Poorman-Allen P, Kundu B, Funasaka K, Roop BC, Mass MJ, DeMarini DM (2003) Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. Environ Mol Mutagen 42:192–205
Kopera E, Schwerdtle T, Hartwig A, Bal W (2004) Co(II) and Cd(II) substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity. Chem Res Toxicol 17:1452–1458
Krueger I, Mullenders LH, Hartwig A (1999) Nickel(II) increases the sensitivity of V79 Chinese hamster cells towards cisplatin and transplatin by interference with distinct steps of DNA repair. Carcinogenesis 20:1177–1184
Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942
Lison D, Carbonnelle P, Mollo L, Lauwerys R, Fubini B (1995) Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Chem Res Toxicol 8:600–606
Liu KJ, Jiang J, Swartz HM, Shi X (1994) Low-frequency EPR detection of chromium(V) formation by chromium(VI) reduction in whole live mice. Arch Biochem Biophys 313:248–252
Lloyd DR, Phillips DH (1999) Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res 424:23–36
Mailhes JB, Hilliard C, Fuseler JW, London SN (2003) Vanadate, an inhibitor of tyrosine phosphatases, induced premature anaphase in oocytes and aneuploidy and polyploidy in mouse bone marrow cells. Mutat Res 538:101–7
Martin P, Poggi MC, Chambard JC, Boulukos KE, Pognonec P (2006) Low dose cadmium poisoning results in sustained ERK phosphorylation and caspase activation. Biochem Biophys Res Commun 350:803–807
Maxwell P, Salnikow K (2004) HIF-1, an oxygen and metal responsive transcription factor. Cancer Biol Ther 3:29–35
M’Bemba-Meka P, Lemieux N, Chakrabarti SK (2007) Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes. Arch Toxicol 81:89–99
McNeill DR, Wong HK, Narayana A, Wilson DM 3rd (2007) Lead promotes abasic site accumulation and co-mutagenesis in mammalian cells by inhibiting the major abasic endonuclease Ape1. Mol Carcinog 46:91–99
Meplan C, Mann K, Hainaut P (1999) Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 274:31663–31670
Miller CA 3rd, Costa M (1988) Characterization of DNA-protein complexes induced in intact cells by the carcinogen chromate. Mol Carcinog 1:125–133
Misra UK, Gawdi G, Akabani G, Pizzo SV (2002) Cadmium-induced DNA synthesis and cell proliferation in macrophages: the role of intracellular calcium and signal transduction mechanisms. Cell Signal 14:327–340
Nieboer E, Fletcher GG, Thomassen Y (1999) Relevance of reactivity determinants to exposure assessment and biological monitoring of the elements. J Environ Monit 1:1–14
National Toxicology Program (NTP) (1998) Toxicology and carcinogenesis studies of cobalt sulfate heptahydrate in F334/N rats and B6C3F1 mice (inhalation studies). NTP Technical Report 507, Research Triangle Park, NC, USA
National Toxicology Program (NTP) (2002) Technical report on the toxicology and carcinogenesis of vanadium pentoxide in F334/N rats and B6C3F1 mice (inhalation studies). NTP Technical Report 507, Research Triangle Park, NC, USA
Ochi T, Takahashi K, Ohsawa M (1987) Indirect evidence for the induction of a pro-oxidant state by cadmium chloride in cultured mammalian cells and a possible mechanism for the induction. Mutat Res 180:257–266
Parfett CL, Pilon R (1995) Oxidative stress-regulated gene expression and promotion of morphological transformation induced in C3H/10T1/2 cells by ammonium metavanadate. Food Chem Toxicol 33:301–308
Pandey SK, Théberge JF, Bernier M, Srivastava AK (1999) Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf-1/MEK/ERK and p70(s6 k) signaling cascade by the insulinomimetic agent vanadyl sulfate. Biochemistry 38:14667–14667
Piatek K, Schwerdtle T, Hartwig A, Bal W (2008) Monomethylarsonous acid destroys a Tetrathiolate Zinc Finger much more efficiently than inorganic arsenite: Mechanistic considerations and consequences for DNA repair inhibition. Chem Res Toxicol (E-pub ahead of print]
Porter DW, Yakushiji H, Nakabeppu Y, Sekiguchi M, Fivash MJ, Kasprzak KS (1997) Sensitivity of Escherichia coli (MutT) and human (MTH1) 8-oxo-dGTPase to in vitro inhibition by the carcinogenic metals, nickel(II), copper (II), cobalt (II) and cadmium (II). Carcinogenesis 18:1785–1791
Potts RJ, Watkin RD, Hart BA (2003) Cadmium exposure down-regulates 8-oxoguanine DNA glycosylase expression in rat lung and alveolar epithelial cells. Toxicology 184:189–202
Prozialeck WC, Lamar PC (1999) Interaction of cadmium (Cd2+) with a 13-residue polypeptide analog of a putative calcium-binding motif of E-cadherin. Biochim Biophys Acta 1451:93–100
Prozialeck WC, Lamar PC, Lynch SM (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and β-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195
Ramirez P, Eastmond DA, Laclette JP, Ostrosky-Wegmann P (1997) Disruption of microtubule assembly and spindle formation as a mechanism for the induction of aneuploid cells by sodium arsenite and vanadium pentoxide. Mut Res 386:291–298
Reglinski J (1998) Environmental and medicinal chemistry of arsenic, antimony and bismuth. Blackie Academic and Professional, London, pp 440–441
Rossman TG, Molina M, Klein CB (1986) Comutagens in E. Coli and chinese hamster cells with special attention to arsenite. Progr Clin Biol Res 209A:403–408
Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21:28–44
Salnikow K, Zhitkovich A, Costa M (1992) Analysis of the binding sites of chromium to DNA and protein in vitro and in intact cells. Carcinogenesis 13:2341–2346
Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, Wu W, Bromberg PA, Reed W (1998) Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol 275:L551–L558
Schaumlöffel N, Gebel T (1998) Heterogeneity of the DNA damage provoked by antimony and arsenic. Mutagenesis 13:281–286
Schoen A, Beck B, Sharma R, Dube E (2004) Arsenic toxicity at low doses: epidemiological and mode of action considerations. Toxicol Appl Pharmacol 198:253–267
Schwerdtle T, Walter I, Mackiw I, Hartwig A (2003a) Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA. Carcinogenesis 24:967–974
Schwerdtle T, Walter I, Hartwig A (2003b) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair (Amst) 2:1449–63
Shi XL, Sun XY, Dalal NS (1990) Reaction of vanadium(V) with thiols generates vanadium (IV) and thiyl radicals. FEBS Lett 271:185–188
Shi X, Dalal NS (1992) Hydroxyl radical generation in the NADH/microsomal reduction of vanadate. Free Radical Res Commun 17:369–376
Shi X, Jiang H, Mao Y, Ye J, Saffiotti U (1996) Vanadium(IV)-mediated free radical generation and related 2′-deoxyguanosine hydroxylation and DNA damage. Toxicology 106:27–38
Shi X, Mao Y, Knapton AD, Ding M, Rojanasakul Y, Gannett PM, Dalal N, Liu K (1994) Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr(IV)-mediated Fenton-like reaction. Carcinogenesis 15:2475–2478
Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78
Silva E, Lopez-Espinosa MJ, Molina-Molina J-M, Fernandez M, Olea N, Kortenkamp A (2006) Lack of activity of cadmium in in vitro estrogenicity assays. Toxicol Appl Pharmacol 216:20–28
Sirover MA, Loeb LA (1976) Infedility of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science 194:1434–1436
Stankiewicz PJ, Tracey AS, Crans DC (1995) Inhibition of phosphate-metabolizing enzymes by oxovanadium(V) complexes. In: Sigel H, Sigel A (Hrsg) Metal Ions in Biological Systems, vol 31. Marcel Dekker, New York, pp 287–324.
Stearns DM, Silveira SM, Wolf KK, Luke AM (2002) Chromium (III) tris (picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutat Res 513:135–142
Steinhoff D, Mohr U (1991) On the question of a carcinogenic action of cobalt-containing compounds. Exp Pathol 41:169–174
Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2001) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 20:77–88
Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299
Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365
Tsou TC, Chen CL, Liu TY, Yang JL (1996) Induction of 8-hydroxydeoxyguanosine in DNA by chromium(III) plus hydrogen peroxide and its prevention by scavengers. Carcinogenesis 17:103–108
Vaglenov A, Nosko M, Georgieva R, Carbonell E, Creus A, Marcos R (1999) Genotoxicity and radioresistance in electroplating workers exposed to chromium. Mutat Res 446:23–34
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 160:1–40
Valverde MT, Rojas E (2001) Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interactions. Mutagenesis 16:265–270
Voitkun V, Zhitkovich A, Costa M (1998) Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res 26:2024–30
Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117
Walter I, Schwerdtle T, Thuy C, Parsons JL, Dianov GL, Hartwig A (2007) Impact of arsenite and its methylated metabolites on PARP-1 activity, PARP-1 gene expression and poly(ADP-ribosyl) ation in cultured human cells. DNA Repair (Amst) 6:61–70
Wang YZ, Bonner JC (2000) Mechanism of extracellular signal-regulated kinase (ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts. Am J Respir Cell Mol Biol 22:590–596
Warren G, Shultz D, Bancroft K, Bennett K, Abbott EH, Rogers S (1981) Mutagenicity of a series of hexacoordinate chromium(III) compounds. Mutat Res 90:111–118
Wetterhahn KE, Hamilton JW, Aiyar J, Borges KM, Floyd R (1989) Mechanism of chromium(VI) carcinogenesis. Reactive intermediates and effect on gene expression. Biol Trace Elem Res 21:405–11
Wu FY, Wu WY, Kuo HW, Liu CS, Wang RY, Lai JS (2001) Effect of genotoxic exposure to chromium among electroplating workers in Taiwan. Sci Total Environ 279:21–28
Yang JL, Yeh SC, Chang CY (1996) Lead acetate mutagenicity and mutational spectrum in the hypoxanthine guanine phosphoribosyltransferase gene of Chinese hamster ovary K1 cells. Mol Carcinog 17:181–91
Ye J, Zhang X, Young HA, Mao Y, Shi X (1995) Chromium(VI)-induced nuclear factor-kappa B activation in intact cells via free radical reactions. Carcinogenesis 16:2401–5
Ye J, Ding M, Zhang X, Rojanasakul Y, Nedospasov S, Vallyathan V, Castranova V, Shi X (1999) Induction of TNFalpha in macrophages by vanadate is dependent on activation of transcription factor NF-kappaB and free radical reactions. Mol Cell Biochem 198:193–200
Yoshida T, Yamauchi H, Fan Sun G (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 198:243–52
Youn CK, Kim SH, Lee DY, Song SH, Chang IY, Hyun JW, Chung MH, You HJ (2005) Cadmium down-regulates human OGG1 through suppression of Sp1 activity. J Biol Chem 280:25185–25195
Zakour RA, Glickman BW (1984) Metal-induced mutagenesis in the lacI gene of Escherichia coli. Mutat Res 126:9–18
von Zglinicki T, Edwall C, Östlund E, Lind B, Nordberg M, Ringertz NR, Wroblewski J (1992) Very low cadmium concentrations stimulate DNA synthesis and cell growth. J Cell Sci 103:1073–1081
Zhang Z, Gao N, He H, Huang C, Luo J, Shi X (2004) Vanadate activated Akt and promoted S phase entry. Mol Cell Biochem 255:227–237
Zhang D, Li J, Wu K, Ouyang W, Ding J, Liu ZG, Costa M, Huang C (2007) JNK1, but not JNK2, is required for COX-2 induction by nickel compounds. Carcinogenesis 28:883–891
Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol 18:3–11