Mô đun carbonyl hóa protein - một yếu tố của quá trình lão hóa ở thực vật

Planta - Tập 252 - Trang 1-13 - 2020
K. Ciacka1, M. Tymiński1, A. Gniazdowska1, U. Krasuska1
1Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland

Tóm tắt

Mô đun carbonyl hóa phụ thuộc vào ROS trong việc sửa đổi sau phiên mã của protein có thể được coi là một trong những sự kiện quan trọng trong quá trình lão hóa hoặc thoái hóa ở thực vật. Lão hóa là một quá trình phát triển dần dần bắt đầu từ sự phát triển của hạt giống (ở thực vật) và sự ra đời (ở động vật). Tuổi thọ của các sinh vật sống phụ thuộc vào nhiều yếu tố và căng thẳng, điều này ảnh hưởng đến mức độ của các loài oxy phản ứng (ROS). Sự mất cân bằng giữa sự sản xuất và tiêu hủy chúng gây ra các tình trạng sinh lý bệnh lý khiến lão hóa diễn ra nhanh chóng. ROS sửa đổi axit nucleic, lipid, đường và protein. Mức độ của các protein bị carbonyl hóa có thể được coi là một chỉ báo về trạng thái oxy hóa của tế bào. Một số con đường carbonyl hóa protein như liên hợp với các loài carbonyl phản ứng và/hoặc tấn công oxy hóa trực tiếp có xúc tác kim loại lên các gốc axit amin được biết đến. Các protein bị carbonyl hóa bất thường dễ bị phân hủy hơn hoặc hình thành bó tụ khi cơ chế phân hủy protein bị ức chế, như đã quan sát trong quá trình lão hóa. Carbonyl hóa protein có thể góp phần vào sự hình thành tín hiệu đặc hiệu trong bào quan và kiểm soát chất lượng protein. Các protein bị carbonyl hóa hình thành trong suốt cuộc sống của cây; tuy nhiên, lão hóa nhanh chóng thúc đẩy sự tích tụ của các dẫn xuất carbonyl. Trong tài liệu y tế liên quan tới lão hóa và sự sửa đổi protein do ROS trung gian, chủ đề này được phân tích kỹ lưỡng, so với khoa học thực vật. Trong khoa học thực vật, lão hóa và thoái hóa được coi là hai quá trình hơi khác nhau (các sự kiện sinh lý). Tuy nhiên, thoái hóa (tiếng Latinh: senēscere) có nghĩa là “trở nên già”. Bài đánh giá này mô tả mối tương quan giữa mức độ carbonyl hóa protein với lão hóa và/hoặc thoái hóa ở thực vật. So sánh dữ liệu từ lĩnh vực nghiên cứu thực vật và động vật, giả thuyết rằng một số cơ chế cơ bản của những thay đổi phụ thuộc vào thời gian trong các quá trình sinh hóa tế bào là chung và carbonyl hóa protein là một trong những nguyên nhân quan trọng của lão hóa.

Từ khóa

#carbonyl hóa protein #lão hóa #ROS #thực vật #sửa đổi sau phiên mã

Tài liệu tham khảo

Abarca D, Martin M, Sabater B (2001) Differential leaf stress responses in young and senescent plants. Physiol Plant 113:409–415. https://doi.org/10.1034/j.1399-3054.2001.1130315.x Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA 111:740–745. https://doi.org/10.1073/pnas.1315179111 Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753. https://doi.org/10.1126/science.1080418 Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T (2001) Protein oxidation in G0 cells of Saccharomyces cerevisiae depends on the state rather than rate of respiration and is enhanced in pos9 but not yap1 mutants. J Biol Chem 276:35396–35404. https://doi.org/10.1074/jbc.M101796200 Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau A-L, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9:252–272. https://doi.org/10.1111/j.1474-9726.2010.00555.x Alscher RG (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. https://doi.org/10.1093/jexbot/53.372.1331 Baraibar MA, Hyzewicz J, Rogowska-Wrzesinska A, Ladouce R, Roepstorff P, Mouly V, Friguet B (2011) Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts. Free Radic Biol Med 51:1522–1532. https://doi.org/10.1016/j.freeradbiomed.2011.06.032 Barja G (2014) The mitochondrial free radical theory of aging. In: Osiewacz HD (ed) Progress in molecular biology and translational science. Academic Press, New York, pp 1–27 Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. Evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162. https://doi.org/10.1104/pp.010612 Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976. https://doi.org/10.1016/j.biocel.2004.10.013 Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316. https://doi.org/10.1074/jbc.272.33.20313 Bilova T, Paudel G, Shilyaev N et al (2017) Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J Biol Chem 292:15758–15776. https://doi.org/10.1074/jbc.M117.794537 Bruenner BA, Jones AD, German JB (1995) Direct characterization of protein adducts of the lipid peroxidation product 4-hydroxy-2-nonenal using electrospray mass spectrometry. Chem Res Toxicol 8:552–559. https://doi.org/10.1021/tx00046a009 Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398. https://doi.org/10.1074/jbc.M003140200 Castro JP, Ott C, Jung T, Grune T, Almeida H (2012) Carbonylation of the cytoskeletal protein actin leads to aggregate formation. Free Radic Biol Med 53:916–925. https://doi.org/10.1016/j.freeradbiomed.2012.06.005 Catalgol B, Ziaja I, Breusing N, Jung T, Höhn A, Alpertunga B, Schroeder P, Chondrogianni N, Gonos ES, Petropoulos I, Friguet B, Klotz L-O, Krutmann J, Grune T (2009) The proteasome is an integral part of solar ultraviolet a radiation-induced gene expression. J Biol Chem 284:30076–30086. https://doi.org/10.1074/jbc.M109.044503 Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN (2007) Protein oxidation and cellular homeostasis: emphasis on metabolism. Biochim Biophys Acta Mol Cell Res 1773:93–104. https://doi.org/10.1016/j.bbamcr.2006.08.039 Cohen AA (2018) Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta Mol Basis Dis 1864:2680–2689. https://doi.org/10.1016/J.BBADIS.2017.05.028 Colavitti R, Finkel T (2005) Reactive oxygen species as mediators of cellular senescence. IUBMB Life 57:277–281. https://doi.org/10.1080/15216540500091890 Corpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in organelles from plant cells. In: Corpas FJ, Gupta DK, Palma JM (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer International Publishing, Cham, pp 1–22 Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176. https://doi.org/10.1016/S1471-4914(03)00031-5 Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623. https://doi.org/10.1373/clinchem.2005.061408 Das N, Levine RL, Orr WC, Sohal RS (2001) Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J 360:209–216. https://doi.org/10.1042/0264-6021:3600209 Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473:805–825. https://doi.org/10.1042/BJ20151227 Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18. https://doi.org/10.1042/bj3240001 Dębska K, Krasuska U, Budnicka K, Bogatek R, Gniazdowska A (2013) Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level. J Plant Physiol 170:480–488. https://doi.org/10.1016/j.jplph.2012.11.018 del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57:1364–1376. https://doi.org/10.1093/pcp/pcw076 Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021 Desmyter L, Dewaele S, Reekmans R, Nystrom T, Contreras R, Chen C (2004) Expression of the human ferritin light chain in a frataxin mutant yeast affects ageing and cell death. Exp Gerontol 39:707–715. https://doi.org/10.1016/j.exger.2004.01.008 Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nyström T (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA 97:5746–5749. https://doi.org/10.1073/pnas.100422497 Dunlop RA, Brunk UT, Rodgers KJ (2009) Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 61:522–527. https://doi.org/10.1002/iub.189 Ferrando B, Furlanetto ALDM, Gredilla R, Havelund JF, Hebelstrup KH, Møller IM, Stevnsner T (2019) DNA repair in plant mitochondria—a complete base excision repair pathway in potato tuber mitochondria. Physiol Plant 166:494–512. https://doi.org/10.1111/ppl.12801 Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142–153. https://doi.org/10.1016/j.tem.2011.12.008 Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113:313–319. https://doi.org/10.1104/pp.113.2.313 Gibala M, Kicia M, Sakamoto W, Gola EM, Kubrakiewicz J, Smakowska E, Janska H (2009) The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod. Plant J 59:685–699. https://doi.org/10.1111/j.1365-313X.2009.03907.x Griesser E, Vemula V, Raulien N, Wagner U, Reeg S, Grune T, Fedorova M (2017) Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress. Redox Biol 11:438–455. https://doi.org/10.1016/j.redox.2016.12.028 Grune T, Jung T, Merker K, Davies KJA (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530. https://doi.org/10.1016/j.biocel.2004.04.020 Grune T, Merker K, Sandig G, Davies KJA (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718. https://doi.org/10.1016/s0006-291x(03)00809-x Gunawardena AHLAN (2008) Programmed cell death and tissue remodelling in plants. J Exp Bot 59:445–451. https://doi.org/10.1093/jxb/erm189 Gutteridge JMC (1984) Age pigments: role of iron and copper salts in the formation of fluorescent lipid complexes. Mech Ageing Dev 25:205–214. https://doi.org/10.1016/0047-6374(84)90141-6 Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300. https://doi.org/10.1093/geronj/11.3.298 Havé M, Leitao L, Bagard M, Castell J-F, Repellin A (2015) Protein carbonylation during natural leaf senescence in winter wheat, as probed by fluorescein-5-thiosemicarbazide. Plant Biol 17:973–979. https://doi.org/10.1111/plb.12315 Havelund JF, Wojdyla K, Davies MJ, Jensen ON, Møller IM, Rogowska-Wrzesinska A (2017) A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. J Proteomics 156:40–51. https://doi.org/10.1016/J.JPROT.2016.12.019 Höhn A, Jung T, Grimm S, Catalgol B, Weber D, Grune T (2011) Lipofuscin inhibits the proteasome by binding to surface motifs. Free Radic Biol Med 50:585–591. https://doi.org/10.1016/j.freeradbiomed.2010.12.011 Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, König J, Grune T, Castro JP (2017) Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol 11:482–501. https://doi.org/10.1016/j.redox.2016.12.001 Jeevan Kumar SP, Rajendra Prasad S, Banerjee R, Thammineni C (2015) Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot 116:663–668. https://doi.org/10.1093/aob/mcv098 Johansson E, Olsson O, Nyström T (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem 279:22204–22208. https://doi.org/10.1074/jbc.M402652200 Kalemba EM, Pukacka S (2014) Carbonylated proteins accumulated as vitality decreases during long-term storage of beech (Fagus sylvatica L.) seeds. Trees 28:503–515. https://doi.org/10.1007/s00468-013-0967-9 Kästle M, Reeg S, Rogowska-Wrzesinska A, Grune T (2012) Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress. Free Radic Biol Med 53:1468–1477. https://doi.org/10.1016/j.freeradbiomed.2012.05.039 Koistinaho J, Hartikainen K, Hatanpää K, Hervonen A (1990) Age pigments in different populations of peripheral neurons in vivo and in vitro. Adv Exp Med Biol 266:49–59. https://doi.org/10.1007/978-1-4899-5339-1_4 Kranner I, Birtić S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40:2155–2165. https://doi.org/10.1016/j.freeradbiomed.2006.02.013 Krasuska U, Ciacka K, Dębska K, Bogatek R, Gniazdowska A (2014) Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos. J Plant Physiol 171:1132–1141. https://doi.org/10.1016/j.jplph.2014.04.015 Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Møller IM (2004) Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851. https://doi.org/10.1016/j.phytochem.2004.04.007 Lanner RM, Connor KF (2001) Does bristlecone pine senesce? Exp Gerontol 36:675–685. https://doi.org/10.1016/S0531-5565(00)00234-5 Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS (1998) Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 25:1089–1097. https://doi.org/10.1016/s0891-5849(98)00144-0 Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796. https://doi.org/10.1016/s0891-5849(02)00765-7 Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36:1495–1502. https://doi.org/10.1016/s0531-5565(01)00135-8 Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. https://doi.org/10.1146/annurev.arplant.57.032905.105316 Lynch AJJ, Barnes RW, Vaillancourt RE, Cambecèdes J (1998) Genetic evidence that Lomatia tasmanica (Proteaceae) is an ancient clone. Aust J Bot 46:25–33. https://doi.org/10.1071/BT96120 Madian AG, Regnier FE (2010) Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9:3766–3780. https://doi.org/10.1021/pr1002609 Maisonneuve E, Ducret A, Khoueiry P, Lignon S, Longhi S, Talla E, Dukan S (2009) Rules governing selective protein carbonylation. PLoS ONE 4:e7269. https://doi.org/10.1371/journal.pone.0007269 Matamoros MA, Kim A, Peñuelas M, Ihling C, Griesser E, Hoffmann R, Fedorova M, Frolov A, Becana M (2018) Protein carbonylation and glycation in Legume nodules. Plant Physiol 177:1510–1528. https://doi.org/10.1104/pp.18.00533 Meany DL, Xie H, Thompson LV, Arriaga EA, Griffin TJ (2007) Identification of carbonylated proteins from enriched rat skeletal muscle mitochondria using affinity chromatography-stable isotope labeling and tandem mass spectrometry. Proteomics 7:1150–1163. https://doi.org/10.1002/pmic.200600450 Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220. https://doi.org/10.1093/jxb/erq282 Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19. https://doi.org/10.1016/j.tplants.2016.08.002 Mohammad-Beigi H, Kjaer L, Eskandari H, Aliakbari F, Christiansen G, Ruvo G, Ward JL, Otzen DE (2019) A possible connection between plant longevity and the absence of protein fibrillation: basis for identifying aggregation inhibitors in plants. Front Plant Sci 10:148. https://doi.org/10.3389/fpls.2019.00148 Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946 Møller IM, Rogowska-Wrzesinska A, Rao RSP (2011) Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J Proteomics 74:2228–2242. https://doi.org/10.1016/j.jprot.2011.05.004 Møller IM, Sweetlove LJ (2010) ROS signaling—specificity is required. Trends Plant Sci 15:370–374. https://doi.org/10.1016/j.tplants.2010.04.008 Moriyasu Y (1995) Examination of the contribution of vacuolar proteases to intracellular protein degradation in Chara corallina. Plant Physiol 109:1309–1315. https://doi.org/10.1104/pp.109.4.1309 Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, Neureiter D, Sperl W, Kofler B (2015) Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-Nu mouse model. PLoS ONE 10:e0129802. https://doi.org/10.1371/journal.pone.0129802 Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885–897. https://doi.org/10.1111/j.1469-8137.2009.03005.x Munné-Bosch S (2015) Senescence: Is it universal or not? Trends Plant Sci 20:713–720. https://doi.org/10.1016/j.tplants.2015.07.009 Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot J-P, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379. https://doi.org/10.1104/pp.106.089458 Nguyen AT, Donaldson RP (2005) Metal-catalyzed oxidation induces carbonylation of peroxisomal proteins and loss of enzymatic activities. Arch Biochem Biophys 439:25–31. https://doi.org/10.1016/j.abb.2005.04.018 Nisa M-U, Huang Y, Benhamed M, Raynaud C (2019) The plant DNA damage response: signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front Plant Sci 10:653. https://doi.org/10.3389/fpls.2019.00653 Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317. https://doi.org/10.1038/sj.emboj.7600599 Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110. https://doi.org/10.1371/journal.pbio.0050110 Petrov D, Zagrovic B (2011) Microscopic analysis of protein oxidative damage: effect of carbonylation on structure, dynamics, and aggregability of villin headpiece. J Am Chem Soc 133:7016–7024. https://doi.org/10.1021/ja110577e Prins A, Mukubi JM, Pellny TK, Verrier PJ, Beyene G, Lopes MS, Emami K, Treumann A, Lelarge-Trouverie C, Noctor G, Kunert KJ, Kerchev P, Foyer CH (2011) Acclimation to high CO2 in maize is related to water status and dependent on leaf rank. Plant Cell Environ 34:314–331. https://doi.org/10.1111/j.1365-3040.2010.02245.x Qin G, Wang Q, Liu J, Li B, Tian S (2009) Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics 9:4241–4253. https://doi.org/10.1002/pmic.200900133 Qiu Q-S, Huber JL, Booker FL, Jain V, Leakey ADB, Fiscus EL, Yau PM, Ort DR, Huber SC (2008) Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated [CO2]. Photosynth Res 97:155–166. https://doi.org/10.1007/s11120-008-9310-5 Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641. https://doi.org/10.1104/pp.108.123141 Rao RSP, Zhang N, Xu D, Møller IM (2018) CarbonylDB: a curated data-resource of protein carbonylation sites. Bioinformatics 34:2518–2520. https://doi.org/10.1093/bioinformatics/bty123 Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861. https://doi.org/10.1038/nature02353 Romero-Puertas MC, Palma JM, Gomez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686. https://doi.org/10.1046/j.1365-3040.2002.00850.x Rudyk O, Eaton P (2014) Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2:803–813. https://doi.org/10.1016/j.redox.2014.06.005 Sadras VO, Echarte L, Andrade FH (2000) Profiles of leaf senescence during reproductive growth of sunflower and maize. Ann Bot 85:187–195. https://doi.org/10.1006/ANBO.1999.1013 Sajithlal GB, Chithra P, Chandrakasan G (1999) An in vitro study on the role of metal catalyzed oxidation in glycation and crosslinking of collagen. Mol Cell Biochem 194:257–263. https://doi.org/10.1023/a:1006988719374 Schneider C, Tallman KA, Porter NA, Brash AR (2001) Two distinct pathways of formation of 4-hydroxynonenal. J Biol Chem 276:20831–20838. https://doi.org/10.1074/jbc.M101821200 Shringarpure R, Grune T, Davies KJA (2001) Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 58:1442–1450. https://doi.org/10.1007/PL00000787 Signorelli S, Coitiño EL, Borsani O, Monza J (2014) Molecular mechanisms for the reaction between ·OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem B 118:37–47. https://doi.org/10.1021/jp407773u Smakowska E, Czarna M, Janska H (2014) Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 19:245–251. https://doi.org/10.1016/J.MITO.2014.03.005 Smakowska E, Skibior-Blaszczyk R, Czarna M, Kolodziejczak M, Kwasniak-Owczarek M, Parys K, Funk C, Janska H (2016) Lack of FTSH4 protease affects protein carbonylation, mitochondrial morphology, and phospholipid content in mitochondria of arabidopsis: new insights into a complex interplay. Plant Physiol 171:2516–2535. https://doi.org/10.1104/pp.16.00370 Smuda M, Henning C, Raghavan CT, Johar K, Vasavada AR, Nagaraj RH, Glomb MA (2015) Comprehensive analysis of Maillard protein modifications in human lenses: effect of age and cataract. Biochemistry 54:2500–2507. https://doi.org/10.1021/bi5013194 Sohal RS (2002) Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med 33:37–44. https://doi.org/10.1016/s0891-5849(02)00856-0 Stadtman E (1992) Protein oxidation and aging. Science 257:1220–1224. https://doi.org/10.1126/science.1355616 Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258. https://doi.org/10.1080/10715760600918142 Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008 Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological “garbage”, and aging. Antioxid Redox Signal 8:197–204. https://doi.org/10.1089/ars.2006.8.197 Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404. https://doi.org/10.1016/j.biocel.2003.08.009 Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711. https://doi.org/10.1111/nph.12047 Thomas H (2002) Ageing in plants. Mech Ageing Dev 123:747–753. https://doi.org/10.1016/s0047-6374(01)00420-1 Torres DP, Proels RK, Schempp H, Hückelhoven R (2017) Silencing of RBOHF2 causes leaf age–dependent accelerated senescence, salicylic acid accumulation, and powdery mildew resistance in barley. Mol Plant-Microbe Interact 30:906–918. https://doi.org/10.1094/MPMI-04-17-0088-R Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390. https://doi.org/10.1104/pp.106.078295 Yan L-J, Forster MJ (2011) Chemical probes for analysis of carbonylated proteins: a review. J Chromatogr B 879:1308–1315. https://doi.org/10.1016/j.jchromb.2010.08.004 Yan L-J, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci 94:11168–11172. https://doi.org/10.1073/pnas.94.21.11168 Yao Z, Liu L, Gao F, Rampitsch C, Reinecke DM, Ozga JA, Ayele BT (2012) Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. J Plant Physiol 169:1477–1488. https://doi.org/10.1016/j.jplph.2012.06.001 Yuan Q, Zhu X, Sayre LM (2007) Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation. Chem Res Toxicol 20:129–139. https://doi.org/10.1021/tx600270f Zavaleta-Mancera HA, Thomas BJ, Thomas H, Scott IM (1999) Regreening of senescent Nicotiana leaves. II. Redifferentiation of plastids. J Exp Bot 50:1683–1689. https://doi.org/10.1093/jexbot/50.340.1683