Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy

Mineralogical Magazine - Tập 68 Số 1 - Trang 61-73 - 2004
D. A. Zedgenizov, Hiroyuki Kagi, V. S. Shatsky, N. V. Sobolev

Tóm tắt

AbstractMicro-inclusions (1 –10 μm) in 55 diamonds of cubic habit from the Udachnaya kimberlite pipe have been studied using vibrational spectroscopy. This has revealed a multiphase assemblage in cuboid diamonds from the Udachnaya kimberlite pipe. This assemblage includes carbonates, olivine, apatite, graphite, water and silicate glasses. The micro-inclusions preserve the high internal pressure and give confidence that the original materials were trapped during growth of the host diamond. The internal pressures, extrapolated to mantle temperatures, lie within the stability field of diamond and the relatively low temperatures are typical for the formation of cuboid diamonds. In contrast to previously reported data for African diamonds, the micro-inclusions in the cuboids from Udachnaya are extremely carbonatitic in composition (H2O/(H2O+CO2) ≈5 –20%) with the observed assemblage of microinclusions similar to some types of carbonatites. The low water and silica content testify that the material in the micro-inclusions of the Udachnaya diamonds was near-solidus carbonatitic melt. Vibrational spectroscopy has provided the evidence of carbonatitic melts in cuboid diamonds.

Từ khóa


Tài liệu tham khảo

Litvin, 2000, Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate-silicate melts at 5–7 GPa and 1200–1570°C, Doklady Earth Sciences, 372, 808

10.1016/S0925-9635(98)00442-7

Rossman, 1988, Spectroscopic Methods in Mineralogy and Geology, 18

Wang, 1993, Micro-Raman and infrared spectral study of forsterite under high pressure, American Mineralogist, 78, 469

Kagi, 1994, Raman frequencies of graphitic carbon in antarctic ureilites, Proceedings of the NIPR Symposium on Antarctic Meteorites, 7, 252

Johnson, 1999, Argon and halogen systematics of fluids within coated diamond from Canada, Proceedings of the 7th International Kimberlite Conference, 2, 391

Dalton, 1998, The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO-MgO-Al2O 3 -SiO2-CO2 at 6 GPa, Journal of Petrology, 39, 1953

10.1088/0953-8984/2/40/008

10.2138/am-2002-0726

10.1029/JB087iB13p10773

10.1180/minmag.1992.056.385.09

Meyer, 1987, Mantle Xenoliths, 501

10.1016/0012-821X(91)90116-Y

10.1038/22678

10.1180/minmag.1992.056.382.13

10.1038/353746a0

10.1016/0022-0248(90)90159-I

Navon, 1999, Diamond formation in the Earth's mantle, Proceedings of the 7th International Kimberlite Conference, 2, 546

Orlov, 1977, The Mineralogy of Diamond, 235

Zedgenizov, 2002, A comparison of carbon isotope composition and impurite defects of microdiamonds of octahedral and cubic habit from Udachnaya kimberlite pipe (Yakutia), Geochimica et Cosmochimica Acta, 66N

10.1038/213474a0

10.1127/ejm/4/2/0389

10.1016/S0012-821X(99)00235-6

10.1180/002646100549904

10.1029/JB089iB06p04059

10.1016/0024-4937(90)90037-2

10.1016/0022-3697(90)90101-K

10.1016/S0012-821X(01)00291-6

10.1515/9781501508974-006

10.1130/0091-7613(2002)030<0691:DNAGBR>2.0.CO;2

Zedgenizov, 1999, The internal structure of microdiamonds from Udachnaya kimberlite pipe, Russian Geology and Geophysics, 40, 113

Sobolev, 1974, Deep-seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle, 246

10.1038/335784a0

10.1016/0016-7037(94)90504-5

10.1016/0022-3697(83)90078-1

10.1038/336459a0

10.1016/0008-6223(82)90043-4

10.1016/0016-7037(92)90388-Y

10.1016/0016-7037(91)90140-Z

10.1007/BF00309462

10.1016/S0022-0248(08)80100-5

McMillan, 1996, Mineral Spectroscopy: a Tribute to Roger G. Burns, 5, 245

10.1038/320034a0