Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities

Journal of the Geological Society - Tập 161 Số 4 - Trang 711-719 - 2004
Harilaos Tsikos1,2, Hugh C. Jenkyns1, Ben Walsworth‐Bell3, Maria Rose Petrizzo3, A. Förster4, Sadat Kolonic5, Elisabetta Erba3, I. Premoli Silva3, Marianne Baas4, Thomas Wagner5, Jaap S. Sinninghe Damsté4
11Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK
25Present address: Department of Geology & Petroleum Geology, University of Aberdeen, Aberdeen AB2 3UE, UK (e-mail: [email protected])
32Ardito Desio Department of Earth Sciences, University of Milan, via L. Mangiagalli 34, 20133 Milan, Italy
43Department of Marine Biogeochemistry and Toxicology, Royal Netherlands Institute of Sea Research (NIOZ), 1790 AB Den Burg, The Netherlands
54Department of Geosciences, University of Bremen, Bremen, Germany

Tóm tắt

We present new, detailed carbon-isotope records for bulk carbonate, total organic carbon (TOC) and phytane from three key sections spanning the Cenomanian–Turonian boundary interval (Eastbourne, England; Gubbio, Italy; Tarfaya, Morocco), with the purpose of establishing a common chemostratigraphic framework for Oceanic Anoxic Event (OAE) 2. Isotope curves from all localities are characterized by a positive carbon-isotope excursion of c . 4‰ for TOC and phytane and c . 2.5‰ for carbonate, although diagenetic overprinting appears to have obliterated the primary carbonate carbon-isotope signal in at least part of the Tarfaya section. Stratigraphically, peak δ 13 C values for all components are followed by intervals of high, near-constant δ 13 C in the form of an isotopic plateau. Recognition of an unambiguous return to background δ 13 C values above the plateau is, however, contentious in all sections, hence no firm chemostratigraphic marker for the end-point of the positive isotopic excursion can be established. The stratigraphically consistent first appearance of the calcareous nannofossil Quadrum gartneri at or near the Cenomanian–Turonian boundary as established by ammonite stratigraphy, in conjunction with the end of the δ 13 C maximum characteristic of the isotopic plateau, provides a potentially powerful tool for delimiting the stratigraphic extent and duration of OAE 2. This Oceanic Anoxic Event is demonstrated to be largely, if not wholly, confined to the latest part of the Cenomanian stage.

Từ khóa


Tài liệu tham khảo

Arthur M.A. Premoli Silva I. 1982. Development of widespread organic carbon-rich strata in the Mediterranean Tethys. In: Schlanger S.O. & Cita M.B. (eds) Nature and Origin of Cretaceous Carbon-Rich Facies . Academic Press London 7–54.

10.1038/335714a0

Bown P.R. & Young J.R. 1998. Techniques. In: Bown P.R. (ed.) Calcareous Nannofossil Biostratigraphy . Chapman and Hall London 16–28.

Bralower T.J. Leckie R.M. Sliter W.V. & Thierstein H.R. 1995. An integrated Cretaceous microfossil biostratigraphy. In: Berggren W.A. Kent D.V. Aubry M.P. & Hardenbol J. (eds) Geochronology Time Scales and Global Stratigraphic Correlation . Society of Economic Paleontologists and Mineralogists Special Publications 54 65–79.

10.1016/S0031-0182(02)00617-X

El Albani A. Kuhnt W. Luderer F. Herbin J.P. & Caron M. 1999. Palaeoenvironmental evolution of the Late Cretaceous sequence in the Tarfaya Basin (southwest of Morocco). In: Cameron N.R. Bate R.H. & Clure V.S. (eds) The Oil and Gas Habitats of the South Atlantic . Geological Society London Special Publications 153 223–240.

10.1144/gsjgs.150.1.0029

10.1016/S0031-0182(96)00129-0

Hayes J.M. 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley J.W. & Cole D.R. (eds) Stable Isotope Geochemistry . Mineralogical Society of America Reviews in Mineralogy and Geochemistry 43 225–277.

10.1144/gsjgs.137.2.0171

10.2475/ajs.288.2.101

10.1017/S0016756800010451

10.1006/cres.2001.0264

Kennedy, W.J., Walaszczyk, I. & Cobban, W.A. 2000. Pueblo, Colorado, USA, candidate Global Boundary Stratotype Section and point for the base of the Turonian stage of the Cretaceous, and for the base of the middle Turonian substage, with a revision of the Inoceramidae (Bivalvia). Acta Geologica Polonica, 50, 295–334.

10.1126/science.256.5055.358

10.1111/j.1747-5457.2002.tb00012.x

10.1006/cres.1997.0076

Kuhnt, W., Chellai, El H., Holbourn, A. , et al., 2001. Centennial records of Cretaceous paleoceanographic events and sea-level fluctuations in the Moroccan Tarfaya–Layoune basin. EOS Transactions, American Geophysical Union, 82, 32.

10.1038/20659

Kuypers, M.M.M., Pancost, R.D., Nijenhuis, I.A., Sinninghe Damsté, J.S. 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the Cenomanian/Turonian oceanic anoxic event. Paleoceanography, 17, 1–13.

Luderer, F. & Kuhnt, W. 1997. A high resolution record of the Rotalipora extinction in laminated organic-carbon rich limestones of the Tarfaya Atlantic coastal basin (Morocco). Annales de la Société Géologique du Nord, 5, 199–205.

10.1016/S0031-0182(99)00009-7

Pratt L.M. & Threlkeld C.N. 1984. Stratigraphic significance of 13 C/ 12 C ratios in mid-Cretaceous rocks of the Western Interior U.S.AÒ. In: Stott D.F. & Glass D.J. (eds) The Mesozoic of Middle North America . Canadian Society of Petroleum Geologists Memoirs 9 305–312.

Pratt L.M. Arthur M.A. Dean W.E. & Scholle P.A. 1993. Paleoceanographic cycles and events during the Late Cretaceous in the Western Interior Seaway of North America. In: Caldwell W.G.E. & Kauffman E.G. (eds) Cretaceous Evolution of the Western Interior Basin of North America . Geological Association of Canada Special Papers 39 333–353.

Roth P.H. 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean. In: Benson W.E. & Sheridan R.E. (eds) et al Initial Reports of the Deep Sea Drilling Project 44 . US Government Printing Office Washington DC 731–760.

Schlanger, S.O. & Jenkyns, H.C. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55, 179–184.

Schlanger S.O. Arthur M.A. Jenkyns H.C. & Scholle P.A. 1987. The Cenomanian/Turonian Oceanic Anoxic Event I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ 13 C excursion. In: Brooks J. & Fleet A.J. (eds) Marine Petroleum Source Rocks . Geological Society London Special Publications 26 371–399.

Scholle, P.A. & Arthur, M.A. 1980. Carbon-isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bulletin, 64, 67–87.

10.1130/0016-7606(2000)112<308:HSIRFT>2.0.CO;2

Watkins D.K. 1985. Biostratigraphy and paleoecology of calcareous nannofossils in the Greenhorn marine cycle. In: Pratt L.M. Kauffman E.G. & Zelt F.B. (eds) Fine-grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes . SEPM Field Trip Guidebook 4 151–156.