Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs

Nature Communications - Tập 4 Số 1
Daisuke Mayumi1, Jan Dolfing2, Susumu Sakata1, Haruo Maeda3, Yoshihiro Miyagawa3, Masayuki Ikarashi3, Hideyuki Tamaki4, Mio Takeuchi1, Cindy H. Nakatsu5, Yoichi Kamagata4
1Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
2School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
3INPEX Corporation, 5-3-1 Akasaka, Minato-ku, 107-6332, Japan
4Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
5Department of Agronomy, Purdue University, West Lafayette, 47907, Indiana, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schrag, D. P. Preparing to capture carbon. Science 315, 812–813 (2007).

Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).

Metz, B. Davidson, O. de Coninck, H. C. Loos, M. & Meyer, L. A. IPCC Special Report on Carbon Dioxide Captuer and Storage Cambridge University Press (2005).

International Energy Agency. Energy Technology Perspectives 2008 International Energy Agency: Paris, (2008).

Lackner, K. S. et al. The urgency of the development of CO2 capture from ambient air. Proc. Natl Acad. Sci. USA 109, 13156–13162 (2012).

Wilson, E. J. Johnson, T. L. & Keith, D. W. Regulating the ultimate sink: managing the risks of geologic CO2 storage. Environ. Sci. Technol. 37, 3476–3483 (2003).

Bruant, R. G. Guswa, A. J. Celia, M. A. & Peters, C. A. Safe storage of CO2 in deep saline aquifers. Environ. Sci. Technol. 36, 240A–245A (2002).

House, K. Z. et al. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl Acad. Sci. USA 108, 20428–20433 (2011).

Kirk, M. F. Variation in energy available to populations of subsurface anaerobes in response to geological carbon storage. Environ. Sci. Technol 45, 6676–6682 (2011).

Morozova, D. et al. Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. Int. J. Greenh. Gas Control 4, 981–989 (2010).

Ravagnani, A. G. Ligero, E. L. & Suslick, S. B. CO2 sequestration through enhanced oil recovery in a mature oil field. J. Petrol. Sci. Eng. 65, 129–138 (2009).

Hirsche, K. et al. inIEA GHG Weyburn CO2 Monitoring & Storage Project Summary Report 2000–2004 Vol. 3, eds Wilson M., Monea M. 73–148Petroleum Technology Research Centre: Regina, (2004).

Magot, M. Ollivier, B. & Patel, B. K. C. Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77, 103–116 (2000).

Gieg, L. M. Davidova, I. A. Duncan, K. E. & Suflita, J. M. Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ. Microbiol. 12, 3074–3086 (2010).

Mayumi, D. et al. Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ. Microbiol 13, 1995–2006 (2011).

Fey, A. Claus, P. & Conrad, R. Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures. Geochim. Cosmochim. Acta 68, 293–306 (2004).

Hattori, S. Kamagata, Y. Hanada, S. & Shoun, H. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 50, 1601–1609 (2000).

Barth, T. Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl. Geochem 6, 1–15 (1991).

Barth, T. & Riis, M. Interactions between organic acid anions in formation waters and reservoir mineral phases. Org. Geochem. 19, 455–482 (1992).

Jones, D. M. et al. Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451, 176–180 (2008).

Dolfing, J. Larter, S. R. & Head, I. M. Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J. 2, 442–452 (2008).

Pedersen, K. The deep subterranean biosphere. Earth Sci. Rev. 34, 243–260 (1993).

Whitman, W. B. Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

Weisburg, W. G. Barns, S. M. Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).

Imachi, H. et al. Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl. Environ. Microbiol. 72, 2080–2091 (2006).

Huber, T. Faulkner, G. & Hugenholtz, P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 20, 2317–2319 (2004).

Yu, Y. N. Breitbart, M. McNairnie, P. & Rohwer, F. FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7, 57 (2006).

Yu, Y. Lee, C. Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89, 670–679 (2005).

Wang, G. Z. Spivack, A. J. & D'Hondt, S. Gibbs energies of reaction and microbial mutualism in anaerobic deep subseafloor sediments of ODP Site 1226. Geochim. Cosmochim. Acta 74, 3938–3947 (2010).

Dolfing, J. Xu, A. P. & Head, I. M. Anomalous energy yields in thermodynamic calculations: importance of accounting for pH-dependent organic acid speciation. ISME J. 4, 463–464 (2010).