Carbon composites from iron-chelating pyridine nitrogen-rich coordinated nanosheets for oxygen reduction
Tóm tắt
Từ khóa
Tài liệu tham khảo
C. Su, Y. Liu, Z. Luo, J.-P. Veder, Y. Zhong, S.P. Jiang, Z. Shao, Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. Chemical Engineering Journal 406, 126883 (2021)
J. Tang, C. Su, Y. Zhong, Z. Shao, Oxide-based precious metal-free electrocatalysts for anion exchange membrance fuel cells: from material design to cell applications. Journal of Materials Chemistry A 9, 3151–3179 (2021)
J. Han, J. Bian, C. Sun, Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research 2020, 9512763 (2020)
G.J. He, Y.Y. Liu, D.E. Gray, J. Othon, Conductive polymer composites cathodes for rechargeable aqueous Zn-ion batteries A mini-review. Composites Communications 27, 100882 (2021)
C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013)
D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng, C. Chen, Y. Li, Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 49, 2215–2264 (2020)
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017)
Z.P. Wang, L. Chen, S.D. Xu, D. Zhang, X.X. Zhou, X. Wu, X.M. Xie, X.Y. Qiu, Cobalt vanadium layered double hydroxide/FeOOH heterostructure catalyst with strong electron interactions for stable oxygen evolution performance. Composites Communications 27, 100780 (2021)
L. Wu, L. Yu, X. Xiao, F. Zhang, S. Song, S. Chen, Z. Ren, Recent advances in self-supported layered double hydroxides for oxygen evolution reaction. Research 2020, 3976278 (2020)
G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011)
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)
Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016)
X.Y. Cui, S.B. Yang, X.X. Yan, J.G. Leng, S. Shuang, P.M. Ajayan, Z.J. Zhang, Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv. Func. Mater. 26, 5708–5717 (2016)
Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7, 1655–1663 (2017)
B. Zhang, X. Zhang, K. Wan, J. Zhu, J. Xu, C. Zhang, T. Liu, Dense hydrogen-bonding network boosts ionic conductive hydrogels with extremely high toughness, rapid self-recovery, and autonomous adhesion for human-motion detection. Research 2021, 9761625 (2021)
C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis Dopants, edges, and defects. Advanced Materials 29, 160413 (2017)
M. Jahan, Q. Bao, K.P. Loh, Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012)
Y.F. Song, P. Yang, Mononuclear tetrapyrido [3,2-a : 2’,3’-c : 3",2"-h : 2’",3"’-j] phenazine (tpphz) cobalt complex. Polyhedron 20, 501–506 (2001)
Y. Mun, M.J. Kim, S.A. Park, E. Lee, Y. Ye, S. Lee, Y.T. Kim, S. Kim, O.H. Kim, Y.H. Cho, Y.E. Sung, J. Lee, Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells. Applied Catalysis B-Environmental 222, 191–199 (2018)
S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.Y. Chiang, W. Zhou, J. Zhao, J. Qiu, Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29, 1700874 (2017)
J. Wang, S. Kattel, Z. Wang, J.G. Chen, C.J. Liu, L-phenylalanine-templated platinum catalyst with enhanced performance for oxygen reduction reaction. ACS Appl. Mater. Interfaces. 10, 21321–21327 (2018)
H.W. Liang, W. Wei, Z.S. Wu, X. Feng, K. Mullen, Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002–16005 (2013)
W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016)
J. Guo, Y. Li, Y. Cheng, L. Dai, Z. Xiang, Highly efficient oxygen reduction reaction electrocatalysts synthesized under nanospace confinement of metal-organic framework. ACS Nano 11, 8379–8386 (2017)
Y. Zhu, B. Zhang, X. Liu, D.W. Wang, D.S. Su, Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 10673–10677 (2014)
J. Hu, L.J. Cao, Z.Y. Wang, J.L. Liu, J.N. Zhang, Y.L. Cao, Z.G. Lu, H. Cheng, Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction. Composites Communications 27, 100866 (2021)
K. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li, J. Li, Y.R. Lu, T.S. Chan, N. Zhang, M. Liu, Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 11, 4173 (2020)
F.L. Meng, Z.L. Wang, H.X. Zhong, J. Wang, J.M. Yan, X.B. Zhang, Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 28, 7948–7955 (2016)
G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J.N. Zhang, Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021)
L. Lin, Q. Zhu, A.-W. Xu, Noble-metal-free Fe-N-C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136, 11027–11033 (2014)
Y. Zheng, S. Chen, K.A.I. Zhang, J. Zhu, J. Xu, C. Zhang, T. Liu, Ultrasound-triggered assembly of covalent triazine framework for synthesizing heteroatom-doped carbon nanoflowers boosting metal-free bifunctional electrocatalysis. ACS Appl. Mater. Interfaces. 13, 13328–13337 (2021)
X. Tang, Y. Wu, W. Zhai, T. Chu, L. Li, B. Huang, T. Hu, K. Yuan, Y. Chen, Iron-based nanocomposites implanting in N, P Co-doped carbon nanosheets as efficient oxygen reduction electrocatalysts for Zn-Air batteries. Composites Communications 29, 100994 (2021)
S. Chen, Y. Zheng, B. Zhang, Y. Feng, J. Zhu, J. Xu, C. Zhang, W. Feng, T. Liu, Cobalt, nitrogen-doped porous carbon nanosheet-assembled flowers from metal-coordinated covalent organic polymers for efficient oxygen reduction. ACS Appl. Mater. Interfaces. 11, 1384–1393 (2019)
S. Serov, K. Artyushkova, P. Atanassov, Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: Synthesis, structure, and reactivity. Adv. Energy Mater. 4, 1301735 (2014)
J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science Advances 1, e1400129 (2015)
X. Zhang, W. Fan, T.X. Liu, Fused deposition modeling 3D printing of polyamide-based composites and its applications. Composites Communications 21, 100413 (2020)
H.J. Shen, E. Gracia-Espino, J.Y. Ma, H.D. Tang, X. Mamat, T. Wagberg, G.Z. Hu, S.J. Guo, Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy 35, 9–16 (2017)
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, Edge-Site engineering of atomically disepersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen eduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018)
T. Marshall-Roth, N.J. Libretto, A.T. Wrobel, K.J. Anderton, M.L. Pegis, N.D. Ricke, T.V. Voorhis, J.T. Miller, Y. Surendranath, Apyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nature Commmunications 11, 5283 (2020)
W.P. van den Wildenberg, G.J. van Boxtel, M.W. van der Molen, D.A. Bosch, J.D. Speelman, C.H. Brunia, Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J. Cogn. Neurosci. 18, 626–636 (2006)
C. Zhang, Y.C. Wang, B. An, R. Huang, C. Wang, Z. Zhou, W. Lin, Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells. Adv. Mater. 29, 1604556 (2017)
J.D. Yi, R. Xu, Q. Wu, T. Zhang, K.T. Zang, J. Luo, Y.L. Liang, Y.B. Huang, R. Cao, Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 3, 883–889 (2018)
Y.Z. Su, Z.Q. Yao, F. Zhang, H. Wang, Z. Mics, E. Canovas, M. Bonn, X.D. Zhuang, X.L. Feng, Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Adv. Func. Mater. 26, 5893–5902 (2016)
S.K. Singh, K. Takeyasu, J. Nakamura, Active sites and mechanism of mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31, 1804297 (2019)