Carbon-based nanomaterials as an emerging platform for theranostics

Materials Horizons - Tập 6 Số 3 - Trang 434-469
Kapil D. Patel1,2,3,4,5, Rajendra K. Singh1,2,3,4,5, Hae‐Won Kim6,2,3,4,7
1Cheonan 31116
2Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
3Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
4Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
5SOUTH KOREA
6Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
7UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea

Tóm tắt

Carbon-based nanomaterials emerge as promising platforms for theranostic applications in disease treatment and tissue repair.

Từ khóa


Tài liệu tham khảo

Lin, 2016, Adv. Drug Delivery Rev., 105, 242, 10.1016/j.addr.2016.05.013

Xu, 2016, ACS Nano, 10, 3267, 10.1021/acsnano.6b00539

Kim, 2013, Biomaterials, 34, 7168, 10.1016/j.biomaterials.2013.05.072

Liu, 2015, ACS Appl. Mater. Interfaces, 7, 19439, 10.1021/acsami.5b05665

Baek, 2015, Nanoscale, 7, 14191, 10.1039/C5NR02730F

Garcia-Alegria, 2016, Sci. Rep., 6, 25917, 10.1038/srep25917

Kang, 2017, Chem. Mater., 29, 3461, 10.1021/acs.chemmater.6b05164

Song, 2016, Biosens. Bioelectron., 76, 195, 10.1016/j.bios.2015.07.002

Soikkeli, 2016, ACS Appl. Mater. Interfaces, 8, 8257, 10.1021/acsami.6b00123

Shi, 2014, J. Biomed. Nanotechnol., 10, 2677, 10.1166/jbn.2014.1881

Bianco, 2005, Curr. Opin. Chem. Biol., 9, 674, 10.1016/j.cbpa.2005.10.005

Feng, 2016, ACS Nano, 10, 4410, 10.1021/acsnano.6b00043

Loh, 2016, Biomater. Sci., 4, 70, 10.1039/C5BM00277J

Bao, 2011, Small, 7, 1569, 10.1002/smll.201100191

Yang, 2013, Small, 9, 1492, 10.1002/smll.201201417

Tian, 2011, ACS Nano, 5, 7000, 10.1021/nn201560b

Ge, 2014, Nat. Commun., 5, 4596, 10.1038/ncomms5596

Hong, 2016, Acta Pharm. Sin. B, 6, 297, 10.1016/j.apsb.2016.01.007

Du, 2016, ACS Appl. Mater. Interfaces, 8, 3287, 10.1021/acsami.5b11154

Konios, 2014, J. Colloid Interface Sci., 430, 108, 10.1016/j.jcis.2014.05.033

Pinto, 2013, Colloids Surf., B, 111, 188, 10.1016/j.colsurfb.2013.05.022

Yang, 2012, Chem. Soc. Rev., 41, 3679, 10.1039/c2cs15308d

Schinwald, 2012, ACS Nano, 6, 736, 10.1021/nn204229f

Ma, 2016, Small, 12, 4936, 10.1002/smll.201600635

Malard, 2009, Phys. Rep., 473, 51, 10.1016/j.physrep.2009.02.003

Bartelmess, 2015, Chem. Soc. Rev., 44, 4672, 10.1039/C4CS00306C

Li, 2015, Adv. Funct. Mater., 25, 5602, 10.1002/adfm.201502469

Liu, 2013, Phys. Chem. Chem. Phys., 15, 2961, 10.1039/c2cp43715e

Song, 2014, J. Am. Chem. Soc., 136, 13558, 10.1021/ja507368z

Hu, 2017, J. Mater. Chem. C, 5, 3908, 10.1039/C7TC00381A

Baldrighi, 2016, Front. Neurosci., 10, 250, 10.3389/fnins.2016.00250

Wang, 2015, Biomaterials, 53, 117, 10.1016/j.biomaterials.2015.02.087

Cha, 2013, ACS Nano, 7, 2891, 10.1021/nn401196a

Singh, 2016, ACS Appl. Mater. Interfaces, 8, 24433, 10.1021/acsami.6b07494

Ge, 2016, Adv. Healthcare Mater., 5, 665, 10.1002/adhm.201500720

Kroto, 1985, Nature, 318, 162, 10.1038/318162a0

Halford, 2006, Chemical & Engineering News Archive, 84, 13

Iijima, 1991, Nature, 354, 56, 10.1038/354056a0

Ruoff, 1995, Carbon, 33, 925, 10.1016/0008-6223(95)00021-5

Collins, 2000, Science, 287, 1801, 10.1126/science.287.5459.1801

Yang, 2011, Carbon, 49, 793, 10.1016/j.carbon.2010.10.014

Hamada, 1992, Phys. Rev. Lett., 68, 1579, 10.1103/PhysRevLett.68.1579

Bolotin, 2008, Solid State Commun., 146, 351, 10.1016/j.ssc.2008.02.024

Morozov, 2008, Phys. Rev. Lett., 100, 016602, 10.1103/PhysRevLett.100.016602

Balandin, 2008, Nano Lett., 8, 902, 10.1021/nl0731872

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Zhu, 2010, Adv. Mater., 22, 3906, 10.1002/adma.201001068

Kim, 2009, Nature, 457, 706, 10.1038/nature07719

Yin, 2010, Small, 6, 307, 10.1002/smll.200901968

Qiao, 2010, Chem. Commun., 46, 8812, 10.1039/c0cc02724c

Peng, 2010, Small, 6, 1686, 10.1002/smll.201000560

Zeng, 2010, Adv. Funct. Mater., 20, 3366, 10.1002/adfm.201000540

Mohanty, 2008, Nano Lett., 8, 4469, 10.1021/nl802412n

Stankovich, 2006, Nature, 442, 282, 10.1038/nature04969

Yin, 2010, ACS Nano, 4, 5263, 10.1021/nn1015874

Julkapli, 2015, Int. J. Hydrogen Energy, 40, 948, 10.1016/j.ijhydene.2014.10.129

Machado, 2012, Catal. Sci. Technol., 2, 54, 10.1039/C1CY00361E

Hu, 2010, ACS Nano, 4, 4317, 10.1021/nn101097v

Yang, 2011, J. Mater. Chem., 21, 3448, 10.1039/C0JM02494E

Yang, 2010, Nano Lett., 10, 3318, 10.1021/nl100996u

Miao, 2015, J. Controlled Release, 211, 28, 10.1016/j.jconrel.2015.05.280

Garg, 2015, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 7, 737

Li, 2017, ACS Appl. Mater. Interfaces, 9, 17681, 10.1021/acsami.7b04718

Li, 2015, J. Am. Chem. Soc., 137, 7881, 10.1021/jacs.5b03991

Wang, 2017, Adv. Mater., 29, 1701013, 10.1002/adma.201701013

Hu, 2016, Theranostics, 6, 1043, 10.7150/thno.14566

Ge, 2014, Nat. Commun., 5, 4596, 10.1038/ncomms5596

Wang, 2017, Carbon, 112, 53, 10.1016/j.carbon.2016.10.096

Zhao, 2016, Theranostics, 6, 1833, 10.7150/thno.16047

Xie, 2016, Biomaterials, 103, 219, 10.1016/j.biomaterials.2016.06.058

Wen, 2016, Biomaterials, 75, 163, 10.1016/j.biomaterials.2015.10.028

Liu, 2015, ACS Appl. Mater. Interfaces, 7, 112, 10.1021/am507658v

Yang, 2018, ACS Appl. Mater. Interfaces, 10, 6982, 10.1021/acsami.7b19284

Zhao, 2018, ACS Appl. Mater. Interfaces, 10, 6608, 10.1021/acsami.7b16910

Kalluru, 2016, Biomaterials, 95, 1, 10.1016/j.biomaterials.2016.04.006

Kim, 2015, Biomacromolecules, 16, 3519, 10.1021/acs.biomac.5b00944

Yao, 2017, Langmuir, 33, 591, 10.1021/acs.langmuir.6b04189

Zheng, 2015, Anal. Chem., 87, 11739, 10.1021/acs.analchem.5b03131

Cao, 2017, ACS Appl. Mater. Interfaces, 9, 159, 10.1021/acsami.6b13150

Kuo, 2017, Biomaterials, 120, 185, 10.1016/j.biomaterials.2016.12.022

Zhang, 2017, Carbon, 118, 752, 10.1016/j.carbon.2017.03.085

Du, 2017, Biomaterials, 121, 109, 10.1016/j.biomaterials.2016.07.008

Zheng, 2016, ACS Appl. Mater. Interfaces, 8, 23533, 10.1021/acsami.6b07453

Meiling, 2016, Sci. Rep., 6, 28557, 10.1038/srep28557

Waddington, 2017, Nat. Commun., 8, 15118, 10.1038/ncomms15118

Reineck, 2017, ACS Nano, 11, 10924, 10.1021/acsnano.7b04647

Arbogast, 1991, J. Phys. Chem., 95, 11, 10.1021/j100154a006

Guldi, 2000, Acc. Chem. Res., 33, 695, 10.1021/ar990144m

Yin, 2016, Environ. Sci. Technol., 50, 11742, 10.1021/acs.est.6b04488

Delgado, 2014, Top. Curr. Chem., 350, 1

Accorsi, 2010, J. Phys. Chem. C, 114, 1385, 10.1021/jp9092699

Sharma, 2011, Nanomedicine, 6, 1813, 10.2217/nnm.11.144

Lucky, 2015, Chem. Rev., 115, 1990, 10.1021/cr5004198

Fan, 2015, Sci. Rep., 5, 9908, 10.1038/srep09908

Herreros-López, 2017, Carbohydr. Polym., 164, 92, 10.1016/j.carbpol.2017.01.068

Liu, 2012, Nanoscale, 4, 7084, 10.1039/c2nr32525j

Huang, 2012, Eur. Polym. J., 48, 1734, 10.1016/j.eurpolymj.2012.06.012

Chistyakov, 2013, BioMed Res. Int., 2013, 4, 10.1155/2013/821498

Hu, 2012, Cell Biol. Int., 36, 677, 10.1042/CBI20110566

Ryan, 2007, J. Immunol., 179, 665, 10.4049/jimmunol.179.1.665

Benn, 2011, Environ. Pollut., 159, 1334, 10.1016/j.envpol.2011.01.018

Chae, 2010, Environ. Eng. Sci., 27, 797, 10.1089/ees.2010.0103

Zhang, 2014, J. Am. Chem. Soc., 136, 2630, 10.1021/ja412254k

Wang, 2011, J. Phys. Chem. C, 115, 18552, 10.1021/jp207047k

Li, 2003, Compos. Sci. Technol., 63, 1517, 10.1016/S0266-3538(03)00072-1

Zhbanov, 2010, ACS Nano, 4, 5937, 10.1021/nn100731u

Avouris, 1999, Appl. Surf. Sci., 141, 201, 10.1016/S0169-4332(98)00506-6

Niyogi, 2002, Acc. Chem. Res., 35, 1105, 10.1021/ar010155r

Star, 2001, Angew. Chem., Int. Ed., 40, 1721, 10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F

Sun, 2002, Acc. Chem. Res., 35, 1096, 10.1021/ar010160v

Hwang, 2013, Nanoscale, 5, 487, 10.1039/C2NR31581E

Balasubramanian, 2005, Small, 1, 180, 10.1002/smll.200400118

Lordi, 2001, Chem. Mater., 13, 733, 10.1021/cm000210a

Singh, 2014, ACS Appl. Mater. Interfaces, 6, 2201, 10.1021/am4056936

Huang, 2002, Nano Lett., 2, 311, 10.1021/nl010095i

Katz, 2004, ChemPhysChem, 5, 1084, 10.1002/cphc.200400193

Wenrong, 2007, Nanotechnology, 18, 412001, 10.1088/0957-4484/18/41/412001

Meng, 2009, Prog. Nat. Sci., 19, 801, 10.1016/j.pnsc.2008.08.011

Lacerda, 2007, Nano Today, 2, 38, 10.1016/S1748-0132(07)70172-X

Tasis, 2006, Chem. Rev., 106, 1105, 10.1021/cr050569o

Zhang, 2010, Drug Discovery Today, 15, 428, 10.1016/j.drudis.2010.04.005

Yang, 2010, Angew. Chem., Int. Ed., 49, 2114, 10.1002/anie.200903463

Liu, 2011, J. Mater. Chem., 21, 586, 10.1039/C0JM02020F

Prakash, 2011, Adv. Drug Delivery Rev., 63, 1340, 10.1016/j.addr.2011.06.013

Liu, 2011, Mater. Today, 14, 316, 10.1016/S1369-7021(11)70161-4

Karimi, 2015, Expert Opin. Drug Delivery, 12, 1089, 10.1517/17425247.2015.1004309

Klumpp, 2006, Biochim. Biophys. Acta, Biomembr., 1758, 404, 10.1016/j.bbamem.2005.10.008

Zhou, 2009, Anal. Chem., 81, 5603, 10.1021/ac900136z

Tang, 2010, J. Am. Chem. Soc., 132, 10976, 10.1021/ja104017y

Dang, 2010, Biomacromolecules, 11, 1796, 10.1021/bm1002398

Cao, 2011, Small, 7, 1199, 10.1002/smll.201100071

Liu, 2008, J. Am. Chem. Soc., 130, 10876, 10.1021/ja803688x

Dresselhaus, 2002, Adv. Phys., 51, 1, 10.1080/00018730110113644

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Novoselov, 2005, Nature, 438, 197, 10.1038/nature04233

Hummers, 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017

Feng, 2011, Biomaterials, 32, 2930, 10.1016/j.biomaterials.2011.01.002

Wang, 2012, Chem. Commun., 48, 9768, 10.1039/c2cc31974h

Liu, 2010, Langmuir, 26, 6158, 10.1021/la100886x

Guo, 2011, Chem. Commun., 47, 12658, 10.1039/c1cc15052a

Wen, 2010, Chem. Commun., 46, 2596, 10.1039/b924832c

Sun, 2008, Nano Res., 1, 203, 10.1007/s12274-008-8021-8

Yang, 2008, J. Phys. Chem. C, 112, 17554, 10.1021/jp806751k

Gonçalves, 2014, Sci. Rep., 4, 6735, 10.1038/srep06735

Zhang, 2013, ACS Appl. Mater. Interfaces, 5, 1761, 10.1021/am303005j

Montes-Navajas, 2013, Langmuir, 29, 13443, 10.1021/la4029904

Yin, 2015, Chem. Rev., 115, 2483, 10.1021/cr500537t

Li, 2008, Nat. Nanotechnol., 3, 101, 10.1038/nnano.2007.451

Mochalin, 2013, Mol. Pharmaceutics, 10, 3728, 10.1021/mp400213z

Xie, 2016, RSC Adv., 6, 9328, 10.1039/C5RA23823D

Kurapati, 2013, Chem. Commun., 49, 734, 10.1039/C2CC38417E

Zheng, 2014, Adv. Mater., 26, 3554, 10.1002/adma.201306192

Sun, 2006, J. Am. Chem. Soc., 128, 7756, 10.1021/ja062677d

Xiao, 2013, Luminescence, 28, 612, 10.1002/bio.2486

Liang, 2013, Carbon, 60, 421, 10.1016/j.carbon.2013.04.055

Amjadi, 2015, J. Photochem. Photobiol., A, 309, 8, 10.1016/j.jphotochem.2015.04.016

Karfa, 2015, RSC Adv., 5, 58141, 10.1039/C5RA09525E

Mehta, 2015, Sens. Actuators, B, 213, 434, 10.1016/j.snb.2015.02.104

Zhou, 2012, Mater. Lett., 66, 222, 10.1016/j.matlet.2011.08.081

Sachdev, 2015, Analyst, 140, 4260, 10.1039/C5AN00454C

Alam, 2015, Green Chem., 17, 3791, 10.1039/C5GC00686D

Dong, 2010, Chem. Mater., 22, 5895, 10.1021/cm1018844

Liu, 2007, Angew. Chem., Int. Ed., 46, 6473, 10.1002/anie.200701271

Wang, 2012, Analyst, 137, 5392, 10.1039/c2an36059d

Zong, 2011, Chem. Commun., 47, 764, 10.1039/C0CC03092A

Zhang, 2012, RSC Adv., 2, 8599, 10.1039/c2ra21217j

Zhai, 2012, Chem. Commun., 48, 7955, 10.1039/c2cc33869f

Lei, 2016, Nanoscale, 8, 2219, 10.1039/C5NR07335A

Li, 2017, Medicine, 96, e5521, 10.1097/MD.0000000000005521

Iakoubovskii, 2000, Diamond Relat. Mater., 9, 861, 10.1016/S0925-9635(99)00354-4

Floren, 2016, J. Funct. Biomater., 7, 26, 10.3390/jfb7030026

Popov, 2017, Diamond Relat. Mater., 75, 6, 10.1016/j.diamond.2016.12.002

Baek, 2016, ACS Appl. Mater. Interfaces, 8, 8967, 10.1021/acsami.6b00963

Hsiao, 2016, Acc. Chem. Res., 49, 400, 10.1021/acs.accounts.5b00484

Zou, 2016, Theranostics, 6, 762, 10.7150/thno.14988

Amanda, 2016, J. Phys.: Condens. Matter, 28, 023002

Petrone, 2016, Phys. Rev. B, 94, 165402, 10.1103/PhysRevB.94.165402

Mochalin, 2012, Nat. Nanotechnol., 7, 11, 10.1038/nnano.2011.209

Bradac, 2010, Nat. Nanotechnol., 5, 345, 10.1038/nnano.2010.56

Raty, 2003, Phys. Rev. Lett., 90, 037401, 10.1103/PhysRevLett.90.037401

Pichot, 2013, Sci. Rep., 3, 2159, 10.1038/srep02159

Dong, 2015, RSC Adv., 5, 82711, 10.1039/C5RA12383F

Ho, 2015, Sci. Adv., 1, e1500439, 10.1126/sciadv.1500439

Vaijayanthimala, 2015, Expert Opin. Drug Delivery, 12, 735, 10.1517/17425247.2015.992412

Perevedentseva, 2013, Nanomedicine, 8, 2041, 10.2217/nnm.13.183

Reina, 2015, J. Nanosci. Nanotechnol., 15, 1022, 10.1166/jnn.2015.9736

Chang, 2008, Nat. Nanotechnol., 3, 284, 10.1038/nnano.2008.99

Rondin, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 82, 115449, 10.1103/PhysRevB.82.115449

Tisler, 2011, ACS Nano, 5, 7893, 10.1021/nn2021259

Zhu, 2012, Theranostics, 2, 302, 10.7150/thno.3627

Cao, 2007, J. Am. Chem. Soc., 129, 11318, 10.1021/ja073527l

Yao, 2012, Eur. J. Org. Chem., 3199, 10.1002/ejoc.201200281

Helmchen, 2005, Nat. Methods, 2, 932, 10.1038/nmeth818

Wang, 2010, J. Am. Chem. Soc., 132, 12237, 10.1021/ja1057423

He, 2008, Chem. Rev., 108, 1245, 10.1021/cr050054x

Cao, 2007, J. Am. Chem. Soc., 129, 11318, 10.1021/ja073527l

Zhang, 2014, Adv. Mater., 26, 4438, 10.1002/adma.201400111

Wang, 2005, Proc. Natl. Acad. Sci. U. S. A., 102, 15752, 10.1073/pnas.0504892102

Dubinina, 2012, J. Am. Chem. Soc., 134, 19346, 10.1021/ja309393c

Shen, 2016, Chem. Soc. Rev., 45, 6725, 10.1039/C6CS00442C

Tsyboulski, 2007, Nano Lett., 7, 3080, 10.1021/nl071561s

Avouris, 2008, Nat. Photonics, 2, 341, 10.1038/nphoton.2008.94

Flavin, 2011, J. Mater. Chem., 21, 17881, 10.1039/c1jm12217g

Bachilo, 2002, Science, 298, 2361, 10.1126/science.1078727

Hartschuh, 2003, Science, 301, 1354, 10.1126/science.1087118

O'Connell, 2002, Science, 297, 593, 10.1126/science.1072631

Heller, 2005, Adv. Mater., 17, 2793, 10.1002/adma.200500477

O'Connell, 2002, Science, 297, 593, 10.1126/science.1072631

Ghosh, 2010, Science, 330, 1656, 10.1126/science.1196382

Piao, 2013, Nat. Chem., 5, 840, 10.1038/nchem.1711

Ju, 2009, Science, 323, 1319, 10.1126/science.1166265

Lee, 2011, Nano Lett., 11, 1636, 10.1021/nl200077t

Zeeshan, 2014, Small, 10, 1284, 10.1002/smll.201302856

Duque, 2013, J. Am. Chem. Soc., 135, 3379, 10.1021/ja4001757

Carlson, 2007, Nano Lett., 7, 3698, 10.1021/nl072014+

Cherukuri, 2012, ACS Nano, 6, 843, 10.1021/nn2043516

Heller, 2009, Nat. Nanotechnol., 4, 114, 10.1038/nnano.2008.369

Zheng, 2017, J. Phys. Lett., 8, 1952

Kadria-Vili, 2016, J. Phys. Chem. C, 120, 23898, 10.1021/acs.jpcc.6b08768

Lu, 2009, Annu. Rev. Phys. Chem., 60, 167, 10.1146/annurev.physchem.040808.090434

Schlücker, 2014, Angew. Chem., Int. Ed., 53, 4756, 10.1002/anie.201205748

Hong, 2011, Angew. Chem., Int. Ed., 50, 4644, 10.1002/anie.201100934

Yang, 2016, Nano Res., 9, 139, 10.1007/s12274-015-0898-4

Tung, 2009, Nat. Nanotechnol., 4, 25, 10.1038/nnano.2008.329

Pan, 2010, Adv. Mater., 22, 734, 10.1002/adma.200902825

Das, 2015, J. Phys. Chem. C, 119, 17988, 10.1021/acs.jpcc.5b05969

Roy, 2015, Mater. Today, 18, 447, 10.1016/j.mattod.2015.04.005

Rong, 2014, Theranostics, 4, 229, 10.7150/thno.8070

Patel, 2013, ACS Nano, 7, 8147, 10.1021/nn403429v

Gan, 2013, Adv. Opt. Mater., 1, 926, 10.1002/adom.201300368

Liu, 2011, J. Colloid Interface Sci., 356, 416, 10.1016/j.jcis.2011.01.065

Wu, 2013, J. Mater. Chem. C, 1, 4676, 10.1039/c3tc30820k

Qu, 2014, Sci. Rep., 4, 5294, 10.1038/srep05294

Sharma, 2016, J. Phys. Lett., 7, 3695

Shen, 2012, New J. Chem., 36, 97, 10.1039/C1NJ20658C

Yang, 2014, J. Appl. Phys., 116, 244306, 10.1063/1.4904958

Qu, 2012, Angew. Chem., Int. Ed., 51, 12215, 10.1002/anie.201206791

Tang, 2012, Adv. Mater., 24, 1504, 10.1002/adma.201104763

Shang, 2012, Sci. Rep., 2, 792, 10.1038/srep00792

Eda, 2010, Adv. Mater., 22, 505, 10.1002/adma.200901996

Mei, 2010, Chem. Commun., 46, 7319, 10.1039/c0cc02374d

Gan, 2013, Adv. Opt. Mater., 1, 554, 10.1002/adom.201300152

Zhang, 2012, J. Mater. Chem., 22, 7461, 10.1039/c2jm16835a

Liu, 2013, Adv. Mater., 25, 3657, 10.1002/adma.201300233

Gao, 2013, Chem. Commun., 49, 8015, 10.1039/c3cc44624g

Wang, 2014, Anal. Chem., 86, 8902, 10.1021/ac502646x

Deng, 2014, Nanoscale, 6, 10388, 10.1039/C4NR02544J

Tian, 2009, Chem. Mater., 21, 2803, 10.1021/cm900709w

Wang, 2012, Angew. Chem., Int. Ed., 51, 9297, 10.1002/anie.201204381

Qu, 2012, Angew. Chem., Int. Ed., 51, 12215, 10.1002/anie.201206791

Chen, 2016, Sci. Rep., 6, 19382, 10.1038/srep19382

Luo, 2013, J. Mater. Chem. B, 1, 2116, 10.1039/c3tb00018d

Bhunia, 2013, Sci. Rep., 3, 1473, 10.1038/srep01473

Jin, 2013, ACS Nano, 7, 1239, 10.1021/nn304675g

Wang, 2016, Sci. Rep., 6, 24850, 10.1038/srep24850

Kim, 2012, ACS Nano, 6, 8203, 10.1021/nn302878r

Kozawa, 2014, J. Phys. Lett., 5, 1754

Yeh, 2016, J. Phys. Lett., 7, 2087

Bachilo, 2002, Science, 298, 2361, 10.1126/science.1078727

Xu, 2013, ACS Nano, 7, 10654, 10.1021/nn4053342

Nie, 2014, Chem. Mater., 26, 3104, 10.1021/cm5003669

Zhao, 2015, Sci. Rep., 5, 14258, 10.1038/srep14258

Gan, 2016, Nanoscale, 8, 7794, 10.1039/C6NR00605A

Hassanien, 2016, J. Phys. Chem. C, 120, 21678, 10.1021/acs.jpcc.6b07593

Cao, 2013, Acc. Chem. Res., 46, 171, 10.1021/ar300128j

Chen, 2016, J. Mater. Chem. C, 4, 9027, 10.1039/C6TC02853E

Ding, 2014, Nanoscale, 6, 13817, 10.1039/C4NR04267K

Yang, 2015, ChemPhysChem, 16, 3058, 10.1002/cphc.201500447

Ma, 2016, Appl. Surf. Sci., 389, 995, 10.1016/j.apsusc.2016.08.039

Putri, 2015, Appl. Surf. Sci., 358, 2, 10.1016/j.apsusc.2015.08.177

Duan, 2015, ACS Catal., 5, 5207, 10.1021/acscatal.5b00991

Fan, 2014, Carbon, 70, 149, 10.1016/j.carbon.2013.12.085

Choi, 2016, Chem. Mater., 28, 6840, 10.1021/acs.chemmater.6b01710

Tran, 2015, ACS Appl. Mater. Interfaces, 7, 28647, 10.1021/acsami.5b10426

Cao, 2014, J. Phys. Chem. C, 118, 2650, 10.1021/jp411979x

Kim, 2013, ACS Nano, 7, 6735, 10.1021/nn403096s

Song, 2014, ACS Appl. Mater. Interfaces, 6, 11882, 10.1021/am502423r

Iannazzo, 2017, Int. J. Pharm., 518, 185, 10.1016/j.ijpharm.2016.12.060

Masoudipour, 2017, Chem. Phys. Lett., 668, 56, 10.1016/j.cplett.2016.12.019

Kang, 2009, Small, 5, 1292, 10.1002/smll.200801820

Gannon, 2007, Cancer, 110, 2654, 10.1002/cncr.23155

Kuo, 2017, Biomaterials, 120, 185, 10.1016/j.biomaterials.2016.12.022

Qiu, 2017, ACS Appl. Mater. Interfaces, 9, 18482, 10.1021/acsami.7b02977

Mytych, 2015, Diamond Relat. Mater., 55, 95, 10.1016/j.diamond.2015.03.014

Rej, 2017, J. Am. Chem. Soc., 139, 193, 10.1021/jacs.6b09293

Setyawati, 2016, ACS Nano, 10, 1170, 10.1021/acsnano.5b06487

Chou, 2012, J. Am. Chem. Soc., 134, 16725, 10.1021/ja306767y

Kamat, 2010, J. Phys. Lett., 1, 520

Pramanik, 2014, Sci. Rep., 4, 6090, 10.1038/srep06090

Pramanik, 2014, J. Phys. Lett., 5, 2150

Gui, 2017, Coord. Chem. Rev., 338, 141, 10.1016/j.ccr.2017.02.007

Sweet, 2017, ACS Omega, 2, 1826, 10.1021/acsomega.7b00229

Hu, 2015, Angew. Chem., Int. Ed., 54, 2970, 10.1002/anie.201411004

Liu, 2016, Analyst, 141, 2657, 10.1039/C5AN02231B

Zhou, 2015, ACS Nano, 9, 7085, 10.1021/acsnano.5b02635

Pan, 2015, Adv. Mater., 27, 7782, 10.1002/adma.201503821

Liu, 2014, ACS Catal., 4, 328, 10.1021/cs400913h

Deng, 2015, Anal. Chem., 87, 2195, 10.1021/ac503595y

Liu, 2014, ChemCatChem, 6, 2634, 10.1002/cctc.201402227

Su, 2016, ACS Sustainable Chem. Eng., 4, 1728, 10.1021/acssuschemeng.5b01698

Unnikrishnan, 2016, ACS Sustainable Chem. Eng., 4, 3008, 10.1021/acssuschemeng.5b01700

Liu, 2017, Nanoscale Res. Lett., 12, 375, 10.1186/s11671-017-2149-y

Xu, 2016, RSC Adv., 6, 28745, 10.1039/C5RA27658F

Erogbogbo, 2010, ACS Nano, 4, 5131, 10.1021/nn101016f

He, 2014, Langmuir, 30, 7182, 10.1021/la501075c

Kang, 2017, Acta Biomater., 55, 466, 10.1016/j.actbio.2017.03.054

Niu, 2011, Small, 7, 540, 10.1002/smll.201001757

Sharma, 2013, J. Raman Spectrosc., 44, 12, 10.1002/jrs.4136

Balasubramanian, 2014, Adv. Funct. Mater., 24, 6348, 10.1002/adfm.201401796

Zhang, 2016, Langmuir, 32, 10253, 10.1021/acs.langmuir.6b02248

Zhang, 2015, Small, 11, 3000, 10.1002/smll.201403459

Ma, 2013, J. Mater. Chem. B, 1, 6495, 10.1039/c3tb21385d

Yashchenok, 2013, Small, 9, 351, 10.1002/smll.201201494

Scolari, 2008, J. Phys. Chem. C, 112, 391, 10.1021/jp076190i

Jiang, 2016, Angew. Chem., Int. Ed., 55, 7231, 10.1002/anie.201602445

Deng, 2013, Chem. Commun., 49, 5751, 10.1039/c3cc42600a

Deng, 2017, Anal. Methods, 9, 287, 10.1039/C6AY02107G

Mukherjee, 2015, Chem. Commun., 51, 10988, 10.1039/C5CC03114A

Huang, 2017, Phys. Chem. Chem. Phys., 19, 8896, 10.1039/C7CP00074J

Tan, 2016, Nanoscale, 8, 4742, 10.1039/C5NR08516K

Zhao, 2017, RSC Adv., 7, 22684, 10.1039/C7RA01115F

Gui, 2015, Nanoscale, 7, 8289, 10.1039/C4NR07620F

Tan, 2016, J. Mater. Chem. C, 4, 10146, 10.1039/C6TC03027K

Niu, 2017, Langmuir, 33, 5786, 10.1021/acs.langmuir.7b00617

Liu, 2013, Nano Lett., 13, 2436, 10.1021/nl400368v

Yuan, 2018, ACS Appl. Bio Mater., 1, 853, 10.1021/acsabm.8b00276

Sun, 2018, ACS Appl. Mater. Interfaces, 10, 25037, 10.1021/acsami.8b05546

Gao, 2017, ACS Appl. Mater. Interfaces, 9, 24846, 10.1021/acsami.7b05569

Sapkota, 2017, ACS Appl. Mater. Interfaces, 9, 9378, 10.1021/acsami.6b16364

Kong, 2012, Adv. Mater., 24, 5844, 10.1002/adma.201202599

Pramanik, 2014, Sci. Rep., 4, 6090, 10.1038/srep06090

Tang, 2013, Adv. Mater., 25, 6569, 10.1002/adma.201303124

Yang, 2007, Nano Lett., 7, 3798, 10.1021/nl072349r

Wang, 2013, J. Mater. Chem. B, 1, 5762, 10.1039/c3tb20986e

Sheng, 2013, Biomaterials, 34, 5236, 10.1016/j.biomaterials.2013.03.090

Gao, 2017, Photoacoustics, 7, 1, 10.1016/j.pacs.2017.05.001

Zedan, 2013, ACS Nano, 7, 627, 10.1021/nn304775h

Moon, 2015, ACS Nano, 9, 2711, 10.1021/nn506516p

Chen, 2011, Nano Lett., 11, 348, 10.1021/nl1042006

Ge, 2015, Adv. Mater., 27, 4169, 10.1002/adma.201500323

De La Zerda, 2008, Nat. Nanotechnol., 3, 557, 10.1038/nnano.2008.231

Zerda, 2010, Nano Lett., 10, 2168, 10.1021/nl100890d

Yang, 2012, Adv. Mater., 24, 1868, 10.1002/adma.201104964

Parvin, 2017, Microchim. Acta, 184, 1117, 10.1007/s00604-017-2108-4

Lee, 2016, Theranostics, 6, 2196, 10.7150/thno.16923

Xu, 2014, Anal. Chem., 86, 12122, 10.1021/ac503002c

Gong, 2014, Langmuir, 30, 10933, 10.1021/la502705g

Shi, 2015, Carbon, 93, 742, 10.1016/j.carbon.2015.05.100

Chen, 2014, Adv. Mater., 26, 6761, 10.1002/adma.201402964

Yao, 2017, ACS Appl. Mater. Interfaces, 9, 13887, 10.1021/acsami.7b01599

Shi, 2014, Biomaterials, 35, 5847, 10.1016/j.biomaterials.2014.03.042

Shi, 2013, Biomaterials, 34, 4786, 10.1016/j.biomaterials.2013.03.023

Cisneros, 2014, Nanomedicine, 9, 2499, 10.2217/nnm.14.26

Wang, 2014, Adv. Funct. Mater., 24, 1880, 10.1002/adfm.201302892

Faraj, 2016, Nanomedicine, 11, 31, 10.2217/nnm.15.182

Al-Jamal, 2012, Angew. Chem., Int. Ed., 51, 6389, 10.1002/anie.201201991

Hong, 2010, Nat. Mater., 9, 485, 10.1038/nmat2766

Hernández-Rivera, 2016, Biomaterials, 101, 229, 10.1016/j.biomaterials.2016.05.045

Yang, 2016, Biomaterials, 104, 361, 10.1016/j.biomaterials.2016.07.029

Jang, 2018, Int. J. Nanomed., 13, 221, 10.2147/IJN.S148211

Shi, 2013, J. Nucl. Med., 54, 109, 10.1016/j.nucmedbio.2012.09.008

Dong, 2016, Theranostics, 6, 1031, 10.7150/thno.14431

Zhang, 2018, Theranostics, 8, 1591, 10.7150/thno.22430

Wang, 2017, Adv. Mater., 29, 1701013, 10.1002/adma.201701013

Welsher, 2008, Nano Lett., 8, 586, 10.1021/nl072949q

Kam, 2005, Proc. Natl. Acad. Sci. U. S. A., 102, 11600, 10.1073/pnas.0502680102

Hashemi, 2018, Acta Biomater., 65, 376, 10.1016/j.actbio.2017.10.040

Meng, 2018, ACS Nano, 12, 2789, 10.1021/acsnano.7b09210

Wang, 2017, ACS Nano, 11, 12134, 10.1021/acsnano.7b05214

Luo, 2016, Biomaterials, 75, 193, 10.1016/j.biomaterials.2015.10.027

Li, 2017, Biomaterials, 139, 30, 10.1016/j.biomaterials.2017.05.030

Chan, 2016, Inorg. Chem., 55, 10267, 10.1021/acs.inorgchem.6b01522

Das, 2016, J. Phys. Chem. Solids, 99, 34, 10.1016/j.jpcs.2016.08.004

Wang, 2014, Nat. Commun., 5, 5357, 10.1038/ncomms6357

Fagan, 2007, J. Am. Chem. Soc., 129, 10607, 10.1021/ja073115c

Sah, 2018, Colloids Surf., B, 162, 108, 10.1016/j.colsurfb.2017.11.046

Yudasaka, 2017, Sci. Rep., 7, 44760, 10.1038/srep44760

Robinson, 2011, J. Am. Chem. Soc., 133, 6825, 10.1021/ja2010175

Zhou, 2017, Chem. Commun., 53, 10588, 10.1039/C7CC04831A

Yu, 2017, ACS Nano, 11, 10147, 10.1021/acsnano.7b04736

Sun, 2018, Chem. Commun., 54, 715, 10.1039/C7CC08820E

Zhang, 2015, Angew. Chem., Int. Ed., 54, 1770, 10.1002/anie.201408472

Dolmans, 2003, Nat. Rev. Cancer, 3, 380, 10.1038/nrc1071

Liu, 2018, Small, 14, 1800293, 10.1002/smll.201800293

Lv, 2015, ACS Nano, 9, 1630, 10.1021/nn5063613

Zhou, 2015, Chem. Rev., 115, 395, 10.1021/cr400478f

Mytych, 2015, Diamond Relat. Mater., 55, 95, 10.1016/j.diamond.2015.03.014

Saravanakumar, 2017, Adv. Sci., 4, 1600124, 10.1002/advs.201600124

Kagan, 2014, ACS Nano, 8, 5610, 10.1021/nn406484b

Hsieh, 2014, Environ. Sci. Technol., 48, 11330, 10.1021/es503163w

Shi, 2014, Acta Biomater., 10, 1280, 10.1016/j.actbio.2013.10.037

Zhao, 2008, Photochem. Photobiol., 84, 1215, 10.1111/j.1751-1097.2008.00333.x

Mikata, 2003, Bioorg. Med. Chem. Lett., 13, 3289, 10.1016/S0960-894X(03)00595-X

Li, 2017, Biosens. Bioelectron., 89, 477, 10.1016/j.bios.2016.03.072

Wang, 2014, Nanoscale, 6, 4642, 10.1039/C3NR06835H

Monteiro, 2016, Phys. Chem. Chem. Phys., 18, 20459, 10.1039/C6CP03366K

Hong, 2015, Chem. Rev., 115, 10816, 10.1021/acs.chemrev.5b00008

Zhang, 2015, ACS Appl. Mater. Interfaces, 7, 23278, 10.1021/acsami.5b07510

Murakami, 2012, J. Am. Chem. Soc., 134, 17862, 10.1021/ja3079972

Yang, 2016, ACS Biomater. Sci. Eng., 2, 2058, 10.1021/acsbiomaterials.6b00462

Lv, 2015, Biomaterials, 63, 115, 10.1016/j.biomaterials.2015.05.016

Lv, 2015, Biomaterials, 63, 115, 10.1016/j.biomaterials.2015.05.016

Wang, 2017, Nanoscale, 9, 4759, 10.1039/C6NR09030C

Lin, 2016, ACS Appl. Mater. Interfaces, 8, 24426, 10.1021/acsami.6b07103

Gong, 2013, Adv. Funct. Mater., 23, 6059, 10.1002/adfm.201301555

Li, 2010, Photodiagn. Photodyn. Ther., 7, 139, 10.1016/j.pdpdt.2010.06.002

Wang, 2016, Int. J. Nanomed., 11, 1793

Zhang, 2011, Adv. Mater., 23, 4770, 10.1002/adma.201102263

Chow, 2011, Sci. Transl. Med., 3, 73ra21, 10.1126/scitranslmed.3001713

Wang, 2017, ACS Appl. Mater. Interfaces, 9, 29055, 10.1021/acsami.7b07468

Liu, 2017, Am. J. Transl. Res., 9, 5197

Kam, 2005, Proc. Natl. Acad. Sci. U. S. A., 102, 11600, 10.1073/pnas.0502680102

Dong, 2017, Colloids Surf., B, 154, 253, 10.1016/j.colsurfb.2017.03.036

Zeng, 2017, Sci. Rep., 7, 43506, 10.1038/srep43506

Li, 2017, Chem. Mater., 29, 6087, 10.1021/acs.chemmater.7b01965

Jin, 2018, ACS Appl. Mater. Interfaces, 10, 8436, 10.1021/acsami.7b17219

Han, 2017, ACS Biomater. Sci. Eng., 3, 3230, 10.1021/acsbiomaterials.7b00643

Xu, 2013, ACS Appl. Mater. Interfaces, 5, 12911, 10.1021/am404714w

Zeng, 2018, ACS Biomater. Sci. Eng., 4, 963, 10.1021/acsbiomaterials.7b00886

Zhou, 2014, J. Photochem. Photobiol., B, 135, 7, 10.1016/j.jphotobiol.2014.04.010

Davids, 2011, Cancer Treat. Rev., 37, 465

Khdair, 2010, J. Controlled Release, 141, 137, 10.1016/j.jconrel.2009.09.004

Sahu, 2013, Biomaterials, 34, 6239, 10.1016/j.biomaterials.2013.04.066

Bai, 2014, Biomaterials, 35, 5805, 10.1016/j.biomaterials.2014.04.008

Shao, 2017, ACS Appl. Mater. Interfaces, 9, 1226, 10.1021/acsami.6b11209

Zhang, 2016, Small, 12, 3578, 10.1002/smll.201600618

Zhang, 2018, ACS Biomater. Sci. Eng., 4, 151, 10.1021/acsbiomaterials.7b00531

Wang, 2017, Bioconjugate Chem., 28, 2815, 10.1021/acs.bioconjchem.7b00515

Du, 2017, Small, 13, 1602592, 10.1002/smll.201602592

Zhang, 2011, Biomaterials, 32, 8555, 10.1016/j.biomaterials.2011.07.071

Kim, 2015, Small, 11, 2527, 10.1002/smll.201402269

Ryu, 2018, J. Controlled Release, 270, 237, 10.1016/j.jconrel.2017.12.008

Ge, 2016, Adv. Healthcare Mater., 5, 665, 10.1002/adhm.201500720

Chang, 2016, J. Mater. Sci. Technol., 32, 753, 10.1016/j.jmst.2016.06.014

Ryu, 2016, Adv. Funct. Mater., 26, 6428, 10.1002/adfm.201601207

Sun, 2018, Chem. Commun., 54, 715, 10.1039/C7CC08820E

Kalluru, 2016, Biomaterials, 95, 1, 10.1016/j.biomaterials.2016.04.006

Zhang, 2017, ACS Appl. Mater. Interfaces, 9, 6761, 10.1021/acsami.6b13808

Jia, 2017, Adv. Healthcare Mater., 1601419, 10.1002/adhm.201601419

Chen, 2014, Adv. Funct. Mater., 24, 451, 10.1002/adfm.201301763

Liu, 2014, Biomaterials, 35, 378, 10.1016/j.biomaterials.2013.09.079

Huang, 2016, ACS Appl. Mater. Interfaces, 8, 14470, 10.1021/acsami.6b04759

Shi, 2014, Biomaterials, 35, 5771, 10.1016/j.biomaterials.2014.03.071

Shi, 2013, Biomaterials, 34, 9666, 10.1016/j.biomaterials.2013.08.049

Shi, 2016, Acta Biomater., 29, 282, 10.1016/j.actbio.2015.10.027

Wang, 2017, Carbon, 112, 53, 10.1016/j.carbon.2016.10.096

Sasikala, 2016, Sci. Rep., 6, 20543, 10.1038/srep20543

Gao, 2016, Biomaterials, 79, 36, 10.1016/j.biomaterials.2015.11.041

Hwang, 2017, Biomaterials, 121, 144, 10.1016/j.biomaterials.2016.12.028

Dai, 2017, ACS Nano, 11, 9467, 10.1021/acsnano.7b05215

Kumawat, 2017, Sci. Rep., 7, 15858, 10.1038/s41598-017-16025-w

Zhang, 2018, Biomaterials, 153, 14, 10.1016/j.biomaterials.2017.10.034

De, 2018, ACS Biomater. Sci. Eng., 4, 514, 10.1021/acsbiomaterials.7b00689

Du, 2017, Biomaterials, 121, 109, 10.1016/j.biomaterials.2016.07.008

Wu, 2016, Sci. Rep., 6, 21170, 10.1038/srep21170

Hua, 2018, ACS Appl. Mater. Interfaces, 10, 10664, 10.1021/acsami.7b19549

Bao, 2018, ACS Appl. Mater. Interfaces, 10, 1544, 10.1021/acsami.7b15332

Kang, 2017, Acta Biomater., 55, 466, 10.1016/j.actbio.2017.03.054

Prabhakar, 2013, Nanoscale, 5, 3713, 10.1039/c3nr33926b

Liu, 2016, Nano Lett., 16, 6236, 10.1021/acs.nanolett.6b02456

Zhang, 2011, Adv. Mater., 23, 4770, 10.1002/adma.201102263

Li, 2016, J. Mater. Chem. B, 4, 5046, 10.1039/C6TB00266H

Deng, 2017, ACS Appl. Mater. Interfaces, 9, 3294, 10.1021/acsami.6b11438

S. Bhatia , Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae , Springer International Publishing , Cham , 2016 , pp. 33–93 , 10.1007/978-3-319-41129-3_2

Ema, 2016, Nanotoxicology, 10, 391, 10.3109/17435390.2015.1073811

Bhattacharya, 2016, Nanomedicine, 12, 333, 10.1016/j.nano.2015.11.011

Liu, 2008, Proc. Natl. Acad. Sci. U. S. A., 105, 1410, 10.1073/pnas.0707654105

Cammisuli, 2018, Sci. Rep., 8, 706, 10.1038/s41598-017-19076-1

Tejendra Kumar, 2019, Curr. Med. Chem., 26, 1, 10.2174/092986732601190314143611

Kurapati, 2015, Small, 11, 3985, 10.1002/smll.201500038

Francis, 2018, Toxicol. Ind. Health, 34, 200, 10.1177/0748233717747472

Vachet, 2015, Nat. Nanotechnol., 10, 103, 10.1038/nnano.2015.4

Wang, 2013, Acc. Chem. Res., 46, 750, 10.1021/ar200335j

Bolskar, 2008, Nanomedicine, 3, 201, 10.2217/17435889.3.2.201

Yang, 2010, ACS Nano, 4, 1178, 10.1021/nn901478z

Kang, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 15431, 10.1073/pnas.1204600109

Zhen, 2015, Sci. China Mater., 58, 799, 10.1007/s40843-015-0089-3

Guan, 2016, Adv. Healthcare Mater., 5, 2283, 10.1002/adhm.201600402

Yamago, 1995, Chem. Biol., 2, 385, 10.1016/1074-5521(95)90219-8

Hendrickson, 2014, Nanotechnol. Russ., 9, 601, 10.1134/S199507801406010X

Kotchey, 2012, Acc. Chem. Res., 45, 1770, 10.1021/ar300106h

Kotchey, 2013, Adv. Drug Delivery Rev., 65, 1921, 10.1016/j.addr.2013.07.007

Andón, 2013, Small, 9, 2721, 10.1002/smll.201202508

Bhattacharya, 2014, Nanoscale, 6, 14686, 10.1039/C4NR03604B

Bussy, 2016, Nanoscale, 8, 590, 10.1039/C5NR06625E

Farrera, 2014, Nanoscale, 6, 6974, 10.1039/c3nr06047k

Singh, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 3357, 10.1073/pnas.0509009103

Wang, 2014, Biomaterials, 35, 9517, 10.1016/j.biomaterials.2014.07.054

Liu, 2006, Nat. Nanotechnol., 2, 47, 10.1038/nnano.2006.170

Sacchetti, 2013, ACS Nano, 7, 1974, 10.1021/nn400409h

Wick, 2014, Angew. Chem., Int. Ed., 53, 7714, 10.1002/anie.201403335

Yang, 2011, ACS Nano, 5, 516, 10.1021/nn1024303

Jasim, 2015, Chem. Sci., 6, 3952, 10.1039/C5SC00114E

Yang, 2013, Biomaterials, 34, 2787, 10.1016/j.biomaterials.2013.01.001

Huang, 2013, ACS Nano, 7, 5684, 10.1021/nn401911k

Manus, 2010, Nano Lett., 10, 484, 10.1021/nl903264h

Rojas, 2011, ACS Nano, 5, 5552, 10.1021/nn200986z

Chow, 2011, Sci. Transl. Med., 3, 73ra21, 10.1126/scitranslmed.3001713

Yuan, 2010, Diamond Relat. Mater., 19, 291, 10.1016/j.diamond.2009.11.022

Moore, 2016, ACS Nano, 10, 7385, 10.1021/acsnano.6b00839

Warheit, 2004, Toxicol. Sci., 77, 117, 10.1093/toxsci/kfg228

Muller, 2005, Toxicol. Appl. Pharmacol., 207, 221, 10.1016/j.taap.2005.01.008

Zhang, 2010, Toxicol. Lett., 198, 237, 10.1016/j.toxlet.2010.07.001