Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries

Advanced Energy Materials - Tập 9 Số 7 - 2019
Yin Hu1, Wei Chen1, Tianyu Lei1, Bin Zhou2, Yu Jiao3, Yichao Yan1, Xinchuan Du1, Jianwen Huang1, Chunyang Wu1, Xuepeng Wang1, Yang Wang1, Bo Chen4, Jun Xu5, Chao Wang1, Jie Xiong1
1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
2Aviation Engineering College Civil Flight University of China Guanghan 618307 China
3School of Applied and Chemical Engineering Xichang College Xichang 615053 China
4Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
5School of Electronic Science & Applied Physics Hefei University of Technology Hefei 230009 China

Tóm tắt

AbstractSignificant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm−2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.

Từ khóa


Tài liệu tham khảo

10.1021/ar300179v

10.1002/aenm.201702348

10.1002/adfm.201800508

10.1016/j.nantod.2018.02.006

10.1038/nenergy.2016.132

10.1002/smtd.201700345

10.1016/j.nanoen.2015.04.032

10.1002/admi.201700783

10.1021/acs.accounts.6b00541

10.1016/j.jpowsour.2018.04.015

10.1002/aenm.201502459

10.1002/aenm.201602347

10.1002/aenm.201700260

10.1016/j.ccr.2016.02.017

10.1021/acs.jpcc.6b08171

10.1021/ja062677d

10.1039/C7TC01574G

10.1039/C4CS00269E

10.1002/adma.201605160

10.1002/aenm.201702889

10.1002/aenm.201702314

10.1016/j.carbon.2012.02.046

10.1021/nn406628s

10.1039/C6TC03666J

10.1016/j.carbon.2017.06.093

10.1039/C7RA07220A

10.1002/anie.201504514

10.1021/acsnano.6b06369

10.1021/acsnano.7b06061

10.1002/aenm.201601630

10.1002/aenm.201702485

10.1016/j.joule.2018.07.022

10.1002/adma.201804084

10.1002/aenm.201601843

10.1002/smll.201701013

10.1149/2.026304jes

10.1038/ncomms6002

10.1038/s41586-018-0109-z

10.1103/PhysRevB.59.1758

10.1103/PhysRevLett.77.3865