Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2Conversion

Angewandte Chemie - Tập 134 Số 34 - 2022
Honghui Ou1, Shangbo Ning2,3, Peng Zhu1, Shenghua Chen1, Aijuan Han1, Qing Kang2, Zhuofeng Hu4, Jinhua Ye5,3, Dingsheng Wang1, Yadong Li1
1Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
2Department Institute of Surface Analysis and Chemical Biology University of Jinan Jinan Shandong 250022 P. R. China
3TJU-NIMS International Collaboration Laboratory School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
4Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology School of Environmental Science and Engineering Sun Yat-sen University Guangzhou 510006 P. R. China
5International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan

Tóm tắt

AbstractSingle‐atom active‐site catalysts have attracted significant attention in the field of photocatalytic CO2conversion. However, designing active sites for CO2reduction and H2O oxidation simultaneously on a photocatalyst and combining the corresponding half‐reaction in a photocatalytic system is still difficult. Here, we synthesized a bimetallic single‐atom active‐site photocatalyst with two compatible active centers of Mn and Co on carbon nitride (Mn1Co1/CN). Our experimental results and density functional theory calculations showed that the active center of Mn promotes H2O oxidation by accumulating photogenerated holes. In addition, the active center of Co promotes CO2activation by increasing the bond length and bond angle of CO2molecules. Benefiting from the synergistic effect of the atomic active centers, the synthesized Mn1Co1/CN exhibited a CO production rate of 47 μmol g−1 h−1, which is significantly higher than that of the corresponding single‐metal active‐site photocatalyst.

Từ khóa


Tài liệu tham khảo

 

10.1002/anie.201914925

10.1002/ange.201914925

10.1038/s41467-021-22991-7

10.1021/jacs.0c09599

10.1021/acscentsci.0c01466

10.1021/acs.chemrev.9b00840

10.1002/anie.202003623

10.1002/ange.202003623

10.1021/jacs.6b02692

 

10.1002/anie.201912719

10.1002/ange.201912719

10.1002/anie.202105186

10.1002/ange.202105186

10.1007/s12274-021-3794-0

10.1016/j.apmate.2021.10.004

Wang G., 2021, Adv. Mater., 33, 21059041

10.1007/s12274-022-4429-9

10.1007/s12274-022-4265-y

 

10.1038/s41467-019-10392-w

10.1002/adma.201704624

10.1002/advs.201900289

10.1002/adma.202105482

10.1021/jacs.9b02997

10.1021/jacs.1c05032

10.1038/s41467-021-21925-7

 

10.1038/s41929-021-00665-3

10.1002/adma.202102576

10.1002/adma.202003327

10.1038/s41929-020-00563-0

10.1007/s12274-020-3072-6

10.1007/s12274-022-4371-x

 

10.1002/adfm.202104343

10.1021/jacs.1c08033

 

10.1021/jacs.8b10380

10.1021/jacs.0c08409

10.1039/D0GC02836C

10.1002/anie.202113044

2022, Angew. Chem., 134, e202113044, 10.1002/ange.202113044

10.1002/adma.202105135

 

10.1073/pnas.1520211113

10.1039/C8DT01931B

10.1038/35055589

10.1126/science.aaa9094

 

10.1007/s40843-018-9245-y

10.1002/adma.202101466

10.1007/s12274-020-2908-4

 

10.1007/s40843-018-9327-y

10.1016/j.jcat.2021.08.025

10.1002/anie.201803863

10.1002/ange.201803863

10.1007/s12274-019-2509-2

 

10.1021/jacs.9b04569

10.1039/C8TA00607E

10.1002/smll.202001634

 

10.1002/adma.201700555

10.1002/chem.200601759

10.1021/acs.chemmater.7b00965

 

10.1002/adma.201801732

10.1038/s41467-020-18143-y

10.1002/anie.201706467

10.1002/ange.201706467

10.1002/anie.201608597

10.1002/ange.201608597

10.1002/aenm.201901505

10.1002/anie.202114450

2022, Angew. Chem., 134, e202114450, 10.1002/ange.202114450