Carbon Dot-Modified TiO2@SiO2 Aerogel as an Anode for Lithium-Ion Batteries

Zanyu Chen1, Jiugang Hu1, Kejian Ding1, Jun Tan1, Hongshuai Hou1, Xiaobo Ji1
1College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Tóm tắt

AbstractTitanium oxides have been considered promising anode materials for lithium-ion batteries (LIBs). However, the poor conductivity and low specific capacity of bulk titanium oxides limit their application. In this study, a carbon dot-modified TiO2@SiO2 aerogel was successfully fabricated through a facile ambient pressure drying strategy and used as an anode material of LIBs. Benefiting from the crosslinking of carbon dots and the surface modification of SiO2, the as-prepared hierarchical aerogel exhibited a high initial discharge capacity of 974 mAh g−1 and maintained a capacity of 299 mAh g−1 after 100 cycles at 0.1 A g−1. It also retained a discharge capacity of 111 mAh g−1 with a CE of 99.9% at 3 A g−1. The carbon dot-modified cross-linking skeleton contributes to the structural integrity of the TiO2@SiO2 aerogel during repeated insertion/extraction of lithium ions, guaranteeing outstanding cycling and high-rate performance. This ambient pressure drying strategy provides a facile and feasible way to produce high-performance aerogel anode materials for lithium-ion storage.

Từ khóa


Tài liệu tham khảo

Jin B, Gao F, Zhu Y-F, Lang X-Y, Han G-F, Gao W, Wen Z, Zhao M, Li J-C, Jiang Q (2016) Facile synthesis of non-graphitizable polypyrrole-derived carbon/carbon nanotubes for lithium-ion batteries. Sci Rep 6:19317

Su D, Liu L, Liu Z, Dai J, Wen J, Yang M, Jamil S, Deng H, Cao G, Wang X (2020) Electrospun Ta-doped TiO2/C nanofibers as a high-capacity and long-cycling anode material for Li-ion and K-ion batteries. J Mater Chem A 8:20666–20676

Li Y, Tang X, Zhou X, Li L, Jiang S (2020) Improvement of lithium ion storage in titanium dioxide nanowires by introducing interfacial capacity. Appl Surf Sci 505:144649

Babu B, Ullattil SG, Prasannachandran R, Kavil J, Periyat P, Shaijumon MM (2018) Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors. ACS Sustain Chem Eng 6:5401–5412

Xu J, Jia C, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047

Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

Xiu Z, Alfaruqi MH, Gim J, Song J, Kim S, Thi TV, Duong PT, Baboo JP, Mathew V, Kim J (2015) Hierarchical porous anatase TiO2 derived from a titanium metal–organic framework as a superior anode material for lithium ion batteries. Chem Commun 51:12274–12277

Fu W, Li Y, Chen M-S, Hu Y, Liu B, Zhang K, Zhan C, Zhang M, Shen Z (2020) An orderly arrangement of layered carbon Nanosheet/TiO2 nanosheet stack with superior artificially interfacial lithium pseudocapacity. J Power Sources 468:228363

Liu Z, Yu Q, Zhao Y, He R, Xu M, Feng S, Li S, Zhou L, Mai L (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48:285–309

Wu J, He X, Li G, Deng J, Chen L, Xue W, Li D (2019) Rapid construction of TiO2/SiO2 composite film on Ti foil as lithium-ion battery anode by plasma discharge in solution. Appl Phys Lett 114:043903

Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao D (2017) Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv Mater 29:1700523

Wasalathilake KC, Hapuarachchi SNS, Zhao Y, Fernando JFS, Chen H, Nerkar JY, Golberg D, Zhang S, Yan C (2020) Unveiling the working mechanism of graphene bubble film/silicon composite anodes in Li-ion batteries: from experiment to modeling. ACS Appl Energy Mater 3:521–531

He J, Yang JG, Jiang J, Xu MW, Wang Q (2021) Constructing reduced graphene oxide network aerogel supported TiO2(B) (Bronze phase TiO2) as anode material for lithium-ion storage. J Alloy Compd 853:157330

Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656

Zhang C, Liu S, Qi Y, Cui F, Yang X (2018) Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries. Chem Eng J 351:825–831

Du D, Jiang Y, Feng J, Li L, Feng J (2020) Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange. Vacuum 173:109117

Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866

Zhang L, Lei Y, He P, Wu H, Guo L, Wei G (2022) Carbon material-based aerogels for gas adsorption: fabrication, structure design, functional tailoring, and applications. Nanomaterials 12(18):3172

Nah H-Y, Parale VG, Jung H-N-R, Lee K-Y, Lim C-H, Ku YS, Park H-H (2018) Role of oxalic acid in structural formation of sodium silicate-based silica aerogel by ambient pressure drying. J Sol-Gel Sci Technol 85:302–310

Meng XL, Huo HY, Cui ZH, Guo XX, Dong SM (2018) Influences of oxygen content on the electrochemical performance of a-SiOx thin-film anodes. Electrochim Acta 283:183–189

Okunev AG, Shmakov AN, Danilyuk AF, Aristov YI (2000) Fragmentation of SiO2 aerogels in aqueous NaOH solutions studied in situ by SAXS using SR. Nucl Instrum Methods Phys Res Sect A 448:261–266

Okunev AG, Shaurman SA, Danilyuk AF, Aristov YI, Bergeret G, Renouprez A (1999) Kinetics of the SiO2 aerogel dissolution in aqueous NaOH solutions: experiment and model. J Non-Cryst Solids 260:21–30

Liu QN, Liu Y, Lei T, Tan YN, Wu H, Li JB (2015) Preparation and characterization of nanostructured titanate bioceramic coating by anodization-hydrothermal method. Appl Surf Sci 328:279–286

Yao L, He J, Li T, Ren T (2016) Novel SiO2/H2Ti2O5·H2O-nanochain composite with high UV–visible photocatalytic activity for supertransparent multifunctional thin films. Langmuir 32:13611–13619

Geng P, Cao S, Guo X, Ding J, Zhang S, Zheng M, Pang H (2019) Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries. J Mater Chem A 7:19465–19470

Casula MF, Corrias A, Paschina G (2001) Iron oxide-silica aerogel and xerogel nanocomposite materials. J Non-Cryst Solids 293–295:25–31

Liu L, Fan Q, Sun C, Gu X, Li H, Gao F, Chen Y, Dong L (2013) Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J Power Sources 221:141–148

Zhang L, Gu X, Yan C, Zhang S, Li L, Jin Y, Zhao S, Wang H, Zhao X (2018) Titanosilicate derived SiO2/TiO2@C nanosheets with highly distributed TiO2 nanoparticles in SiO2 matrix as robust lithium ion battery anode. ACS Appl Mater Interfaces 10:44463–44471

Wang QF, Wang ML, Miao J, Bi WY, Yang H, Zhang M (2019) Fabrication of SiO2 aerogel supported C/TiO2 nanocomposite and Li+ storage performance. J Mater Sci: Mater Electron 30:14834–14846

Ding M, Cao L, Miao X, Sang T, Zhang C, Ping Y (2021) Fabrication of hollow TiO2 nanospheres for high-capacity and long-life lithium storage. Ionics 27:3365–3372

Huo J, Ren Y, Xue Y, Liu Y, Guo S (2021) Sulfur/nitrogen dual-doped three-dimensional reduced graphene oxide modified with mesoporous TiO2 nanoparticles for promising lithium-ion battery anodes. J Alloy Compd 868:159183

Yang S, Cao C, Huang P, Peng L, Sun Y, Wei F, Song W (2015) Sandwich-like porous TiO2/reduced graphene oxide (rGO) for high-performance lithium-ion batteries. J Mater Chem A 3:8701–8705

Ren Y, Zhang G, Huo J, Li J, Liu Y, Guo S (2022) Flower-like TiO2 hollow microspheres with mixed-phases for high-pseudocapacitive lithium storage. J Alloy Compd 902:163730

Chen J, Li Y, Mu J, Zhang Y, Yu Z, Han K, Zhang L (2018) C@TiO2 nanocomposites with impressive electrochemical performances as anode material for lithium-ion batteries. J Alloy Compd 742:828–834