Carbamoylation of primary, secondary and aromatic amines by dimethyl carbonate in a flow system over solid catalysts
Tóm tắt
Carbamate esters represent an important class of organic compounds which find wide application in chemical industry. Classical procedures for the preparation of carbamates are based on the reaction with a very risky compound - phosgene or phosgene derivatives. A phosgene-free flow-system synthesis of eight carbamates in the reaction of various amines with dimethyl carbonate has been presented. The influence of amine order and structure on their activity in the carbamoylation process was studied. Fe2O3, Fe2O3/SiO2, Fe2O3/CoO/NiO/SiO2, TZC-3/1 and T-4419 were used as catalysts for the process. The iron – chrome catalyst TZC-3/1 was found to be the most active leading to approx. 70% yield of methyl N-hexylcarbamate with an 80% selectivity in the reaction of n-hexylamine with dimethyl carbonate at 150°C.
Tài liệu tham khảo
Ullmann’s Encyclopedia of Industrial Chemistry. Carbamates and Carbamoyl Chlorides, vol. A5. 5th ed. 1999. p. 51–8.
Adames P, Baron FA. Esters of Carbamic Acid. Chem Rev. 1965;65:567–602.
Green W, Wuts PGM. Protective Groups in Organic Synthesis. 3rd ed. New York: Wiley and Sons; 1999. p. 503–50.
Aresta M, Quaranta E. Carbon dioxide: a substitute for phosgene. Chemtech. 1997;27:32–40.
Twitchett HJ. Chemistry of the production of organic isocyanates. Chem Soc Rev. 1974;3:209–30.
Majer P, Randad R. A Safe and Efficient Method for Preparation of N, N'-Unsymmetrically Disubstituted Ureas Utilizing Triphosgene. J Org Chem. 1994;59:1937–8.
Norwick JS, Powell NA, Nguyen TM. An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates. J Org Chem. 1992;57:7364–6.
Wang L, Shang J, Liu S, Liu L, Zhang S, Deng Y. Environmentally benign and effective syntheses ofN-substituted carbamates via alcoholysis of disubstituted ureas over TiO2/SiO2 catalyst. Pure Appl Chem. 2012;84:461–71.
Ono Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A Gen. 1997;155:133–66.
Kijeński J, Śmigiera E, Polaczek J. Węglany alkilowe jako zielone reagenty. Otrzymywanie i perspektywy Przemysł Chemiczny. 2004;83:493–6.
Delledonne D, Rivetti F, Romano U. Developments in the production and application of dimethylcarbonate. Appl Catal A Gen. 2001;221:241–51.
Hacking MAPJ, van Rantwijk F, Sheldon RA. Lipase catalyzed reactions of aliphatic and arylaliphatic carbonic acid esters. J Mol Catal B Enzym. 2000;9:201–8.
Sima T, Guo S, Shi F, Deng Y. The syntheses of carbamates from reactions of primary and secondary aliphatic amines with dimethyl carbonate in ionic liquids. Tetrahedron Lett. 2002;43:8145–7.
Zhou H, Shi F, Tian X, Zhang Q, Deng Y. Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids. J Mol Catal A Chem. 2007;271:89–92.
Carloni S, De Vos D, Jacobs P, Maggi R, Sartori G, Sartorio R. Catalytic Activity of MCM-41-TBD in the Selective Preparation of Carbamates and Unsymmetrical Alkyl Carbonates from Diethyl Carbonate. J Catal. 2002;205:199–204.
Vauthey I, Valot F, Gozzi C, Fache F, Lemaire M. An environmentally benign access to carbamates and ureas. Tetrahedron Lett. 2000;41:6347–50.
Baba T, Fuliwara M, Oosaku A, Kobayashi A, Deleon R, Ono Y. Catalytic synthesis of N-alkyl carbamates by methoxycarbonylation of alkylamines with dimethyl carbonate using Pb(NO3)2. Appl Catal A Gen. 2002;227:1–6.
Curini M, Epifano F, Maltese F, Rosati O. Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis. Tetrahedron Lett. 2002;43:4895–7.
Distaso M, Quaranta E. Group 3 metal (La, Sc) triflates as catalysts for the carbomethoxylation of aliphatic amines with dimethylcarbonate under mild conditions. Tetrahedron. 2004;60:1531–9.
Deleon RG, Kobayashi A, Yamauchi T, Ooichi J, Baba T, Sasaki M, et al. Catalytic methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate to dimethylhexane-1,6-dicarbamate using Bi(NO3)3. Appl Catal A Gen. 2002;225:43–9.
Distaso M, Quaranta E. Highly selective carbamation of aliphatic diamines under mild conditions using Sc(OTf)3 as catalyst and dimethyl carbonate as a phosgene substitute. Appl Catal B Environ. 2006;66:72–80.
Fu Z, Ono Y. Synthesis of metyl N-phenyl carbamate by methoxycarbonylation of aniline with dimethyl carbonate using Pb compounds as catalysts. J Mol Catal A Chem. 1994;91:399–405.
Margetić D, Zrinski Antonac I, Glasovac Z, Eckert-Maksić M, Maksimović L. Reactions of dimethyl carbonate with aliphatic amines under high pressure. Synthetic Commun. 2011;41:2283–9.
Juarez R, Pennemann H, Garcia H. Continuous flow carbamoylation of aniline by dimethyl carbonate using a microreactor coated with a thin film of ceria supported gold nanoparticles. Catalysis Today. 2011;159:25–8.
Yoshida T, Sasaki M, Hitara F, Kawamani Y, Inazu K, Ishikawa A, et al. Highly selective methoxycarbonylation of aliphatic diamines with methyl phenyl carbonate to the corresponding methyl N-alkyl dicarbamates. Appl Catal A Gen. 2005;289:174–8.
Zhang L, Yang Y, Xue Y, Fu X, An Y, Gao G. Experimental and theoretical investigation of reaction of aniline with dimethyl carbonate catalyzed by acid–base bifunctional ionic liquids. Catalysis Today. 2010;158:279–85.
Dhakshinamoorthy A, Alvaro M, Garcia H. Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Appl Catal A Gen. 2010;378:19–25.