Capacitance measurements on integrated conductors for detection of matrix cracks in GFRP
Tóm tắt
Từ khóa
Tài liệu tham khảo
K. Schulte, C. Baron, Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos. Sci. Technol.36(1), 63–76 (1989). https://doi.org/10.1016/0266-3538(89)90016-X.
J. C. Abry, S. Bochard, A. Chateauminois, M. Salvia, G. Giraud, In situ detection of damage in CFRP laminates by electrical resistance measurements. Compos. Sci. Technol.59(6), 925–935 (1999). https://doi.org/10.1016/S0266-3538(98)00132-8.
M. Kupke, K. Schulte, R. Schüler, Non-destructive testing of FRP by d.c. and a.c. electrical methods. Compos. Sci. Technol.61(6), 837–847 (2001). https://doi.org/10.1016/S0266-3538(00)00180-9.
K. Takahashi, H. T. Hahn, Towards practical application of electrical resistance change measurement for damage monitoring using an addressable conducting network. Struct. Health Monit.11(3), 367–377 (2012). https://doi.org/10.1177/1475921711424519.
T. Augustin, D. Grunert, H. H. Langner, V. Haverkamp, B. Fiedler, Online monitoring of surface cracks and delaminations in carbon fiber/epoxy composites using silver nanoparticle based ink. Adv. Manuf. Polym. Compos. Sci.3(3), 110–119 (2017). https://doi.org/10.1080/20550340.2017.1362508.
L. Böger, M. H. G. Wichmann, L. O. Meyer, K. Schulte, Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos. Sci. Technol.68(7-8), 1886–1894 (2008). https://doi.org/10.1016/j.compscitech.2008.01.001.
E. T. Thostenson, T. W. Chou, Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology. 19(21), 215713 (2008). https://doi.org/10.1088/0957-4484/19/21/215713.
I. Aguilar Ventura, J. Zhou, G. Lubineau, Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings. Compos. Sci. Technol.117:, 342–350 (2015). https://doi.org/10.1016/j.compscitech.2015.07.007.
N. D. Alexopoulos, C. Bartholome, P. Poulin, Z. Marioli-Riga, Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (cnt) fibers. Compos. Sci. Technol.70(2), 260–271 (2010). https://doi.org/10.1016/j.compscitech.2009.10.017.
B. R. Loyola, K. J. Loh, V. La Saponara, in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, SPIE Proceedings, ed. by M. Tomizuka. Static and dynamic strain monitoring of GFRP composites using carbon nanotube thin films (SPIE, 2011), p. 798108. https://doi.org/10.1117/12.881006.
B. Pinto, S. Kern, J. J. Ku-Herrera, J. Yasui, V. La Saponara, K. J. Loh, A comparative study of a self strain-monitoring carbon nanotube film and carbon fibers under flexural loading by electrical resistance changes. J. Phys. Conf. Ser.628:, 012098 (2015). https://doi.org/10.1088/1742-6596/628/1/012098.
B. R. Loyola, in Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering, ed. by K. J. Loh, S. Nagarajaiah. 14 - in situ sensing in glass fiber-reinforced polymer composites via embedded carbon nanotube thin films (Woodhead PublishingOxford, 2016), pp. 327–352. https://doi.org/10.1016/B978-1-78242-326-3.00014-2.
K. Aly, A. Li, P. D. Bradford, In-situ monitoring of woven glass fiber reinforced composites under flexural loading through embedded aligned carbon nanotube sheets. J. Compos. Mater.52(20), 2777–2788 (2018). https://doi.org/10.1177/0021998317754128.
G. Yang, X. Feng, W. Wang, Q. OuYang, L. Liu, Z. Wu, Graphene and carbon nanotube-based high-sensitive film sensors for in-situ monitoring out-of-plane shear damage of epoxy composites. Compos. B Eng.204:, 108494 (2021). https://doi.org/10.1016/j.compositesb.2020.108494.
J. Yan, A. Downey, A. Cancelli, S. Laflamme, A. Chen, J. Li, F. Ubertini, Concrete crack detection and monitoring using a capacitive dense sensor array. Sensors (Basel, Switzerland). 19(8), 1843 (2019). https://doi.org/10.3390/s19081843.
A. A. Nassr, W. W. El-Dakhakhni, Damage detection of FRP-strengthened concrete structures using capacitance measurements. J. Compos. Constr.13(6), 486–497 (2009).
Y. Cheng, F. Gao, A. Hanif, Z. Lu, Z. Li, Development of a capacitive sensor for concrete structure health monitoring. Construct. Build. Mater.149:, 659–668 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.150.
Y. Cheng, A. Hanif, Z. Li, in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, ed. by Hoon Sohn. Development of a flexible capacitive sensor for concrete structure health monitoring, vol. 10598 (SPIE, 2018), pp. 154–162. https://doi.org/10.1117/12.2306201.
P. Hudec, C. MacInnis, M. Moukwa, The capacitance effect method of measuring moisture and salt content of concrete. Cem. Concr. Res.16(4), 481–490 (1986). https://doi.org/10.1016/0008-8846(86)90085-2.
A. A. Nassr, W. H. Ahmed, W. W. El-Dakhakhni, Coplanar capacitance sensors for detecting water intrusion in composite structures. Meas. Sci. Technol.19(7), 075702 (2008).
X. Yin, D. A. Hutchins, G. G. Diamond, P. Purnell, Non-destructive evaluation of concrete using a capacitive imaging technique: Preliminary modelling and experiments. Cem. Concr. Res.40(12), 1734–1743 (2010). https://doi.org/10.1016/j.cemconres.2010.08.015.
P. Chakraborty, N. B. Gundrati, C. Zhou, D. D. L. Chung, Effect of stress on the capacitance and electric permittivity of three-dimensionally printed polymer, with relevance to capacitance-based stress monitoring. Sensors Actuators A Phys.263:, 380–385 (2017). https://doi.org/10.1016/j.sna.2017.07.008.
P. Chakraborty, G. Zhao, C. Zhou, D. D. L. Chung, Unprecedented sensing of interlayer defects in three-dimensionally printed polymer by capacitance measurement. Smart Mater. Struct.27(11), 115012 (2018). https://doi.org/10.1088/1361-665x/aae16e.
J. C. Abry, Y. K. Choi, A. Chateauminois, B. Dalloz, G. Giraud, M. Salvia, Compos. Sci. Technol.61(6), 855–864 (2001). https://doi.org/10.1016/S0266-3538(00)00181-0.
X. Yin, D. A. Hutchins, Non-destructive evaluation of composite materials using a capacitive imaging technique. Compos. B Eng.43(3), 1282–1292 (2012). https://doi.org/10.1016/j.compositesb.2011.10.018.
M. Morozov, W. Jackson, S. G. Pierce, Capacitive imaging of impact damage in composite material. Compos. B Eng.113:, 65–71 (2017). https://doi.org/10.1016/j.compositesb.2017.01.016.
L. Lampani, F. Sarasini, J. Tirillò, P. Gaudenzi, Analysis of damage in composite laminates with embedded piezoelectric patches subjected to bending action. Compos. Struct.202:, 935–942 (2018). https://doi.org/10.1016/j.compstruct.2018.04.073.
C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, Integration of piezoelectric transducers (pzt and pvdf) within polymer-matrix composites for structural health monitoring applications: new success and challenges. Int J Smart Nano Mater., 1–27 (2020). https://doi.org/10.1080/19475411.2020.1830196.
I. M. d. Rosa, F. Sarasini, Use of PVDF as acoustic emission sensor for in situ monitoring of mechanical behaviour of glass/epoxy laminates. Polym. Test.29(6), 749–758 (2010). https://doi.org/10.1016/j.polymertesting.2010.04.006.
S. Masmoudi, A. El Mahi, El Guerjouma, R., S. Turki, Mechanical behaviour and identification of damage by acoustic emission of smart composites. Multidiscip. Model. Mater. Struct.10(1), 2–17 (2014). https://doi.org/10.1108/MMMS-11-2012-0023.
S. Mall, J. M. Coleman, Monotonic and fatigue loading behavior of quasi-isotropic graphite/epoxy laminate embedded with piezoelectric sensor. Smart Mater. Struct.7(6), 822–832 (1998). https://doi.org/10.1088/0964-1726/7/6/010.
M. Yocum, H. Abramovich, A. Grunwald, S. Mall, Fully reversed electromechanical fatigue behavior of composite laminate with embedded piezoelectric actuator/sensor. Smart Mater. Struct.12(4), 556–564 (2003). https://doi.org/10.1088/0964-1726/12/4/307.
H. P. Konka, Embedded Piezoelectric Fiber Composite Sensors for Applications in Composite Structures (2011). LSU Doctoral Dissertations. 1983. https://digitalcommons.lsu.edu/gradschool_dissertations/1983.
N. A. Chrysochoidis, E. Gutiérrez, Evaluation of the sensitivity and fatigue performance of embedded piezopolymer sensor systems in sandwich composite laminates. Smart Mater. Struct.24(2), 025032 (2015). https://doi.org/10.1088/0964-1726/24/2/025032.
C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, K. Khellil, R. Lachat, On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review. Compos. Struct.215:, 127–149 (2019). https://doi.org/10.1016/j.compstruct.2019.02.046.
A. A. Eddib, D. D. L. Chung, First report of capacitance-based self-sensing and in-plane electric permittivity of carbon fiber polymer-matrix composite. Carbon. 140:, 413–427 (2018). https://doi.org/10.1016/j.carbon.2018.08.070.
R. Asmatulu, B. Venishetty, E. Asmatulu, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition - 2009. Non-destructive testing of fiber reinforced composite materials using a capacitance bridge (ASMENew York, NY, 2010), pp. 171–177. https://doi.org/10.1115/IMECE2009-12335.
S. A. Grammatikos, R. J. Ball, M. Evernden, R. G. Jones, Impedance spectroscopy as a tool for moisture uptake monitoring in construction composites during service. Compos. A: Appl. Sci. Manuf.105:, 108–117 (2018). https://doi.org/10.1016/j.compositesa.2017.11.006.
DIN EN ISO 527-4:1997-07, Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and anisotropic fibre-reinforced plastic composites (ISO 527- 4:1997) (1997). German verion EN ISO 527-4:1997.
R. Zoughi, B. Zonnefeld, in Review of Progress in Quantitative Nondestructive Evaluation: Volume 10B, ed. by D. O. Thompson, D. E. Chimenti. Permittivity characteristics of kevlar, carbon composites, e-glass, and rubber (33% carbon) at x-band (8–12 ghz) (Springer USBoston, MA, 1991), pp. 1431–1436. https://doi.org/10.1007/978-1-4615-3742-7_38.
V. I. Sokolov, S. I. Shalgunov, I. G. Gurtovnik, L. G. Mikheeva, I. D. Simonov-Emelyanov, Dielectric characteristics of glass fibre reinforced plastics and their components. Int. Polym. Sci. Technol.32(7), 62–67 (2005). https://doi.org/10.1177/0307174X0503200715.