Silicon áp dụng ở tán cây là một chiến lược hiệu quả để giảm thiểu nứt trái anh đào ngọt

Adamo Domenico Rombolà1, Maurizio Quartieri1, Arleen Rodríguez-Declet1, Antonio Minnocci2, Luca Sebastiani2, Giovambattista Sorrenti1
1Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
2Crop Science Research Center, Scuola Superiore Sant’Anna, Pisa, Italy

Tóm tắt

Nứt trái do mưa trước thu hoạch, một vấn đề lớn trong sản xuất anh đào ngọt, đang trở nên trầm trọng hơn do biến đổi khí hậu. Hiện tại, việc phun chế phẩm muối canxi trước thu hoạch là kỹ thuật phổ biến để giảm nứt trái trong các vườn anh đào không có mái che bằng nhựa. Nghiên cứu này đã đánh giá hiệu quả của việc áp dụng silicon ở tán cây trong việc giảm thiểu nứt trái anh đào ngọt dưới các điều kiện thực địa khác nhau. Bốn cuộc thử nghiệm thực địa đã được thực hiện trên các cây trưởng thành thuộc các giống Van, New Star và Emperor Francis. Các biện pháp điều trị bao gồm nước (đối chứng), clorua canxi và silicat natri. Nhiều lần phun (ba lần) đã được tiến hành hàng tuần từ khi trái bắt đầu có màu cho đến khoảng 1 tuần trước khi thu hoạch. Kết quả cho thấy, dưới các điều kiện thuận lợi cho việc nứt, silicat natri đã giảm tỷ lệ trái nứt đến một mức độ tương đương hoặc cao hơn so với clorua canxi. Nghiên cứu này nhấn mạnh cách mà các nguồn silicon áp dụng ở tán cây có thể góp phần hiệu quả vào việc giảm thiểu nứt trái anh đào, như một kỹ thuật thay thế cho các phương pháp phòng ngừa khác.

Từ khóa

#nứt trái #anh đào ngọt #silicon #clorua canxi #silicat natri #biến đổi khí hậu

Tài liệu tham khảo

Alkio M, Jonas U, Sprink T, van Nocker S, Knoche M (2012) Identification of putative candidate genes involved in cuticle formation in Prunus avium (sweet cherry) fruit. Ann Bot 110:101–112. https://doi.org/10.1093/aob/mcs087 Balbontín C, Ayala H, Rubilar J, Cote J, Figueroa CR (2014) Transcriptional analysis of cell wall and cuticle related genes during fruit development of two sweet cherry cultivars with contrasting levels of cracking tolerance. Chil J Agric Res 74:162–169. https://doi.org/10.4067/S0718-58392014000200006 Bat-Erdene O, Szegő A, Gyöngyik M, Mirmazloum I, Papp I (2021) Effects of silicon in plants with particular reference to horticultural crops - review article. Int J Hortic Sci 27. https://doi.org/10.31421/ijhs/27/2021/9096 Børve J, Sekse L, Stensvand A (2000) Cuticular fractures promote postharvest fruit rot in sweet cherries. Plant Dis 84:1180–1184. https://doi.org/10.1094/PDIS.2000.84.11.1180 Christensen JV (1972) Cracking in cherries: III. Determination of cracking susceptibility. Acta Agric Scand 22:128–136. https://doi.org/10.1080/00015127209433471 Christensen JV (1996) Rain-induced cracking of sweet cherries: its causes and prevention. In: Webster AD, Looney NE (eds) Cherries: Crop Physiology, production and uses. CAB International, UK, pp 297–327 Cline JA, Meland M, Sekse L, Webster AD (1995) Rain cracking of sweet cherries: II. Influence of rain covers and rootstocks on cracking and fruit quality. Acta Agric Scand Sect B — Soil Plant Sci 45:224–230. https://doi.org/10.1080/09064719509413108 Correia S, Schouten R, Silva AP, Gonçalves B (2018) Sweet cherry fruit cracking mechanisms and prevention strategies: a review. Sci Hortic 240:369–377. https://doi.org/10.1016/j.scienta.2018.06.042 Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85. https://doi.org/10.1111/nph.15343 Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389. https://doi.org/10.1093/aob/mcm247 Demirsoy LK, Bilgener S (1998) The effects of preharvest calcium hydroxide applications on cracking in 0900 ‘Ziraat’, ‘Lambert’ and ‘Van’ sweet cherries. Acta Hortic 657–662. https://doi.org/10.17660/ActaHortic.1998.468.82 Epstein E (1999) Silicon. Annu Rev Plant Physiol. Plant Mol Biol 50:641–664. https://doi.org/10.1146/annurev.arplant.50.1.641 Facteau TJ, Rowe KE, Chestnut NE (1987) Response of Bing and Lambert sweet cherry fruit to preharvest calcium chloride applications. HortScience 22:271–273 Gonçalves B, Silva AP, Moutinho-Pereira J, Bacelar E, Rosa E, Meyer AS (2007) Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L). Food Chem 103:976–984. https://doi.org/10.1016/j.foodchem.2006.08.039 Hansen EJ, Proebsting EL (1996) Cherry nutrient requirements and water relations. In: Webster AD, Looney NE (eds) Cherries: Crop Physiology, production and uses. CAB International, UK, pp 243–257 Hattori T, Inanaga S, Tanimoto E, Lux A, Luxová M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749. https://doi.org/10.1093/pcp/pcg090 Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2002) Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J Plant Res 115:0023–0027. https://doi.org/10.1007/s102650200004 Karagiannis E, Michailidis M, Skodra C, Molassiotis A, Tanou G (2021) Silicon influenced ripening metabolism and improved fruit quality traits in apples. Plant Physiol Biochem 166:270–277. https://doi.org/10.1016/j.plaphy.2021.05.037 Knoche M, Winkler A (2017) Rain-induced cracking of sweet cherries. In: Quero-García J, Lezzoni A, Puławska J, Lang G (eds) Cherries: botany, production and uses. CABI, Wallingford, pp 140–165 Looney NE (1986) Benefits of calcium sprays below expectations in BC tests. Goodfruit Grower 36:7–8 Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam; Boston Ma JF, Takahashi E (1993) Interaction between calcium and silicon in water-cultured rice plants. Plant Soil 148:107–113. https://doi.org/10.1007/BF02185390 Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. https://doi.org/10.1016/j.tplants.2006.06.007 Martin LBB, Rose JKC (2014) There’s more than one way to skin a fruit: formation and functions of fruit cuticles. J Exp Bot 65:4639–4651. https://doi.org/10.1093/jxb/eru301 McCully ME, Canny MJ, Huang CX, McCully ME, Canny MJ, Huang CX (2009) Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology. Morphological and anatomical applications. Funct Plant Biol 36:97–124. https://doi.org/10.1071/FP08304 McCully ME, Canny MJ, Huang CX, Miller C, Brink F, McCully ME, Canny MJ, Huang CX, Miller C, Brink F (2010) Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: energy dispersive X-ray microanalysis (CEDX) applications 1. Funct Plant Biol 37:1011–1040. https://doi.org/10.1071/FP10095 Measham PF, Bound SA, Gracie AJ, Wilson SJ, Measham PF, Bound SA, Gracie AJ, Wilson SJ (2009) Incidence and type of cracking in sweet cherry (Prunus avium L.) are affected by genotype and season. Crop Pasture Sci 60:1002–1008. https://doi.org/10.1071/CP08410 Minnocci A, Francini A, Romeo S, Sgrignuoli AD, Povero G, Sebastiani L (2018) Zn-localization and anatomical changes in leaf tissues of green beans (Phaseolus vulgaris L.) following foliar application of Zn-lignosulfonate and ZnEDTA. Sci Hortic 231:15–21. https://doi.org/10.1016/j.scienta.2017.12.002 Ouzounidou G, Giannakoula A, Ilias I, Zamanidis P (2016) Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz J Bot 39:531–539. https://doi.org/10.1007/s40415-016-0274-y Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274. https://doi.org/10.1016/j.pbi.2009.04.009 Sekse L (1995) Fruit cracking in sweet cherries (Prunus avium L.). Some physiological aspects—a mini review. Sci Hortic 63:135–141. https://doi.org/10.1016/0304-4238(95)00806-5 Sekse L (1998) Fruit cracking mechanisms in sweet cherries (Prunus avium L.) - a review. Acta Hortic 637–648. https://doi.org/10.17660/ActaHortic.1998.468.80 Sekse L, Bjerke KL, Vangdal E (2005) Fruit cracking in sweet cherries - an integrated approach. Acta Hortic 471–474. https://doi.org/10.17660/ActaHortic.2005.667.68 Servili M, Minnocci A, Veneziani G, Taticchi A, Urbani S, Esposto S, Sebastiano L, Valmorri S, Corsetti A (2008) Compositional and tissue modifications induced by the natural fermentation process in table olives. J Agric Food Chem 56(15):6389–6396. https://doi.org/10.1021/jf8007019 Simon G (2006) Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention. Int J Hortic Sci 12:27–35. https://doi.org/10.31421/IJHS/12/3/654 Simon G, Hrotkó K, Magyar L (2004) Fruit quality of sweet cherry cultivars grafted on four different rootstocks. Acta Hortic 658:365–370. https://doi.org/10.17660/ActaHortic.2004.658.53 Tafolla-Arellano JC, Báez-Sañudo R, Tiznado-Hernández ME (2018) The cuticle as a key factor in the quality of horticultural crops. Sci Hortic 232:145–152. https://doi.org/10.1016/j.scienta.2018.01.005 Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S (2017) Role of silicon on plant–pathogen interactions. Front Plant Sci 8:701. https://doi.org/10.3389/fpls.2017.00701 Wang Y, Guo L, Zhao X, Zhao Y, Hao Z, Luo H, Yuan Z (2021) Advances in mechanisms and omics pertaining to fruit cracking in horticultural plants. Agronomy 11:1045. https://doi.org/10.3390/agronomy11061045