Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhiễm Trùng Candida albicans: một mô hình vết thương trên lợn mới để đánh giá hiệu quả điều trị
Tóm tắt
Candida albicans là nguyên nhân phổ biến gây bệnh nấm cơ hội trên toàn thế giới và là một yếu tố chính trong các nhiễm trùng vết thương. Mục đích của nghiên cứu này là thiết lập một mô hình vết thương nấm và phân tích hiệu quả của một chất chống nấm phổ biến đối với sự phát triển của ba chủng C. albicans. Vết bỏng độ hai được tạo ra, sau đó được nhiễm với một trong ba chủng C. albicans ATCC khác nhau: chủng tham chiếu 10261, chủng kháng fluconazole 64550 và chủng nhạy cảm với fluconazole 26310. Sau khi nhiễm nấm, mỗi vết thương được băng lại trong 4 giờ để cho phép nấm định cư trên mỗi bề mặt vết thương. Sau 4 giờ, các băng được gỡ bỏ, và mỗi vết thương được điều trị một lần hoặc hai lần mỗi ngày với terbinafine hydrochloride bôi tại chỗ hoặc để không điều trị. Vào ngày 2, 4 và 7 sau khi nhiễm, ba vết thương từ mỗi nhóm điều trị được cấy và định lượng. Vào ngày 2, các vết thương bị nhiễm với các chủng nhạy cảm 26310 và 10261 và được điều trị hai lần cho thấy sự giảm đáng kể so với những vết thương nhiễm mà chỉ được điều trị một lần hàng ngày. Vào ngày 4, các vết thương nhiễm C. albicans nhạy cảm với fluconazole (ATCC 26310) cho thấy sự giảm đáng kể trong số lượng tế bào nấm với điều trị được áp dụng hai lần mỗi ngày. Một sự giảm đáng kể trong số lượng thuộc địa đã được thể hiện ở cả ba chủng vào ngày thứ bảy với điều trị tích cực so với các vết thương không được điều trị. Việc điều trị hai lần hàng ngày dẫn đến số lượng nấm thấp hơn so với điều trị một lần hàng ngày. Cả hai phương pháp điều trị đều không thể hoàn toàn tiêu diệt C. albicans trong suốt thời gian nghiên cứu này. Việc thiết lập một mô hình vết thương nấm đáng tin cậy sẽ hỗ trợ trong mục tiêu chuyển giao để xác định các chất chống nấm mới có thể được sử dụng lâm sàng bởi các nhân viên chăm sóc vết thương.
Từ khóa
#Candida albicans #mô hình vết thương #chất chống nấm #terbinafine #nhiễm trùng vết thươngTài liệu tham khảo
Huang, David B, Ostrosky-Zeichner Luis, Wu, Jashin J, Pang, Katie R. Tyring, StephenK.Therapy of common superficial fungal infections. Derma Ther. 2004;17:517–22.
Rentz AM, Halpern MT, Bowden R. The impact of candidemia on length of hospital stay, outcome, and overall cost of illness. Clin Infect Dis. 1998;27:781–8.
Swoboda SM, Merz WG, Lipsetta PA. Candidemia: the impact of antifungal prophylaxis in a surgical intensive care unit. Surg Infect (Larchmt). 2003;4:345–54.
Cochran A, Morris SE, Edelman LS, Saffle JR. Systemic Candida infection in burn patients: a case-control study of management patterns and outcomes. Surg Infect (Larchmt). 2002;3:367–74.
Duggan S, Leonhardt I, Hünniger K, Kurzai O. Host response to Candida albicans bloodstream infection and sepsis. Virulence. 2015;6(4):316–26. https://doi.org/10.4161/21505594.2014.988096 (Epub 2015 Mar 18. PMID: 25785541; PMCID: PMC4601378).
Khan MA, Khan A, Khan SH, Azam M, Khan MMU, Khalilullah H, Younus H. Coadministration of liposomal methylglyoxal increases the activity of amphotericin B against Candida albicans in leukopoenic mice. J Drug Target. 2021;29(1):78–87. https://doi.org/10.1080/1061186X.2020.1803333 (Epub 2020 Aug 6 PMID: 32723117).
Wasylyshyn A, Linder KA, Castillo CG, Zhou S, Kauffman CA, Miceli MH. Breakthrough Invasive Fungal Infections in Patients with Acute Myeloid Leukemia. Mycopathologia. 2020;185(2):299–306. https://doi.org/10.1007/s11046-019-00418-8 (Epub 2020 Jan 14 PMID: 31939052).
Matthaiou DK, Blot S, Koulenti D. Candida burn wound sepsis: The “holy trinity” of management. Intensive Crit Care Nurs. 2018;46:4–5. https://doi.org/10.1016/j.iccn.2018.02.001 (Epub 2018 Mar 13 PMID: 29548615).
Derkenne C, Ronchi L, Prunet B. Management of Burns. N Engl J Med. 2019;381(12):1188. https://doi.org/10.1056/NEJMc1909342 (PMID: 31532984).
Mayhall CG. The epidemiology of burn wound infections: then and now. Clin Infect Dis. 2003;37(4):543–50.
Suleyman G, Alangaden GJ. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infect Dis Clin North Am. 2021;35(4):1027–53. https://doi.org/10.1016/j.idc.2021.08.002 (PMID: 34752219).
Fridkin SK, Jarvis WR. Epidemiology of nosocomial fungal infections. Clin Microbiol Rev. 1996;9:499–511.
Gelfand JA. Infections in burn patients: a paradigm for cutaneous infection in the patient at risk. Am J Med. 1984;76:158–65.
Ekenna O, Sherertz RJ, Bingham H. Natural history of bloodstream infections in a burn patient population: the importance of candidemia. Am J Infect Control. 1993;21:189–95.
Esposito S. Immune system and surgical site infection. J Chemother. 2001;13(Spec 1):12–6.
Charles PE, Doise JM, Quenot JP, et al. Candidemia in critically ill patients: difference of outcome between medical and surgical patients. Intensive Care Med. 2003;29:2162–9.
Palackic A, Popp D, Tapking C, Houschyar KS, Branski LK. Fungal Infections in Burn Patients. Surg Infect (Larchmt). 2021;22(1):83–7. https://doi.org/10.1089/sur.2020.299 (Epub 2020 Oct 9 PMID: 33035112).
Yecies T, Mohapatra A, Semins MJ. Outcomes of Endourologic Interventions in Patients with Preoperative Funguria. J Endourol. 2019;33(8):668–72. https://doi.org/10.1089/end.2018.0852 (Epub 2019 May 7 PMID: 30924689).
Moore EC, Padiglione AA, Wasiak J, Paul E, Cleland H. Candida in burns: risk factors and outcomes. J Burn Care Res. 2010;31(2):257–63. https://doi.org/10.1097/BCR.0b013e3181d0f536 (PMID: 20182372).
Hani U, Shivakumar HG, Vaghela R, Osmani RA, Shrivastava A. Candidiasis: a fungal infection–current challenges and progress in prevention and treatment. Infect Disord Drug Targets. 2015;15(1):42–52. https://doi.org/10.2174/1871526515666150320162036 (PMID: 25809621).
Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury Nat Rev Dis Primers. 2020;6(1):11. https://doi.org/10.1038/s41572-020-0145-5.PMID:32054846;PMCID:PMC7224101.
Abi-Said D, Anaissie E, Uzun O, Raad I, Pinzcowski H, Vartivarian S. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis. 1997;24:1122–8.
Fraser VJ, Jones M, Dunkel J, Storfer S, Medoff G, Dunagan WC. Candidemia in a tertiary care hospital: epidemiology, risk factors, and predictors of mortality. Clin Infect Dis. 1992;15:414–21.
Rosanova MT, Basilico H, Villasboas M, Finquelievich J, Mónaco A, Pérez G, Berberian G, Alvarez V, Andión E, Santos P. Infecciones fúngicas en una unidad de quemados pediátrica [Fungal infections in a pediatric burn care]. Arch Argent Pediatr. 2011;109(5):441–4. https://doi.org/10.1590/S0325-00752011000500012 (Spanish PMID: 22042076).
Schwab F, Gastmeier P, Hoffmann P, Meyer E. Summer, sun and sepsis-The influence of outside temperature on nosocomial bloodstream infections: A cohort study and review of the literature. PLoS ONE. 2020;15(6): e0234656. https://doi.org/10.1371/journal.pone.0234656.PMID:32559761;PMCID:PMC7304998.
Pensler JM, Herndon DN, Ptak H, Bonds E, Rutan TC, Desai MH. Fungal sepsis: an increasing problem in major thermal injuries. J Burn Care Rehab. 1986;7:488–91.
Scheibler E, Garcia MCR, da Silva RM, Figueiredo MA, Salum FG, Cherubini K. Use of nystatin and chlorhexidine in oral medicine: Properties, indications and pitfalls with focus on geriatric patients. Gerod. 2017;34:291–8.
Eschenauer GA, Nguyen MH, Clancy CJ. Is Fluconazole or an Echinocandin the Agent of Choice for Candidemia. Ann Pharmacother. 2015;49:1068–74.
Garcia-Cuesta C, Sarrion-Pérez MG, Bagán JV. Current treatment of oral candidiasis: A literature review. J Clin Exp Dent. 2014;6(5):e576–82. https://doi.org/10.4317/jced.51798.
Ryder NS, Mieth H. Allylamine antifungal drugs. Curr Top Med Mycol. 1992;4:158–88.
Clayton YM. In vitro activity of terbinafine. Clin Experimen Dermatol. 1989;14:101–3.
Ryder NS, Favre B. Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharma. 1997;8:275–87.
Petranyi G, Meingassner JG, Mieth H. Antifungal activity of the allylamine derivative terbinafine in vitro. Antimic Agt Chemo. 1987;31:1365–8.
Schaude M, Ackerbauer H, Mieth H. Inhibitory effect of antifungal agents on germ tube formation in Candida albicans. Mykosen. 1987;30:281–7.
Petranyi, G., J. G. Meingassner, and H. Mieth. 1983. SF 86–327:a new antimycotic agent and its antifungal activity in vitro, section M6, p. 15–19. In K. H. Spitzy and K. Karrer (ed.), Proceedings of the 13th International Congress of Chemotherapy, Vienna, Austria, 28 August-2 September 1983. Egermann, Vienna.
Petranyi G, Ryder NS, Stiitz A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Sci. 1984;224:1239–41.
Ryder NS. The mechanism of action of terbinafine. Cttnuat and Experimental Dermatology. 1989;14:98–10.
Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol. 1992;126(Suppl 39):2–7.
Silva-Dias A, Miranda IM, Branco J, Cobrado L, MonteiroSoares M, Pina-Vaz C, Rodrigues AG. In vitro antifungal activity and in vivo antibiofilm activity of cerium nitrate against Candida species. J Antimic Chemo. 2015;70(4):1083–93. https://doi.org/10.1093/jac/dku511.
Lazzell AL, Chaturvedi AK, Pierce CG, Prasad D, Uppuluri P, Lopez-Ribot JL. Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimic Chemo. 2009;64(3):567–70. https://doi.org/10.1093/jac/dkp242.
Kucharíková S, Tournu H, Holtappels M, Van Dijck P, Lagrou K. In vivo efficacy of anidulafungin against mature Candida albicans biofilms in a novel rat model of catheter associated Candidiasis. Antimic Agt Chemo. 2010;54(10):4474–5. https://doi.org/10.1128/AAC.00697-10.
Bink A, Kucharíková S, Neirinck B, Vleugels J, Van Dijck P, Cammue BPA, Thevissen K. The nonsteroidal antiinflammatory drug diclofenac potentiates the in vivo activity of caspofungin against Candida albicans biofilms. J Infect Dis. 2012;206(11):1790–7. https://doi.org/10.1093/infdis/jis594.
Zhao J, Cheng Y, Song X, Wang C, Su G, Liu Z. A Comparative Treatment Study of Intravitreal Voriconazole and Liposomal Amphotericin B in an Aspergillus fumigatus Endophthalmitis Model. Invest Ophthalmol Vis Sci. 2015;56(12):7369–76. https://doi.org/10.1167/iovs.15-17266.
Wiederhold NP, Najvar LK, Matsumoto S, Bocanegra RA, Herrera ML, Wickes BL, Kirkpatrick WR, Patterson TF. Efficacy of the investigational echinocandin ASP9726 in a guinea pig model of invasive pulmonary aspergillosis. Antimic Agt Chemo. 2015;59(5):2875–81. https://doi.org/10.1128/AAC.04857-14.
Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Rep Regen. 2001;9:66–76.
Grada A, Mervis J, Falanga. Research Techniques Made Simple: Animal Models of Wound Healing. J Invest Dermatol. 2018;138(10):2095–105.
Liu Y, Chen JY, Shang HT, Liu CE, Wang Y, Niu R, Wu J, Wei H. Light microscopic, electron microscopic, and immunohistochemical comparison of Bama minipig (Sus scrofa domestica) and human skin. Comp Med. 2010;60:142–8.
Eaglstein WH, Mertz PM. New methods for assessing epidermal wound healing: the effects of triamcinolone acetonide and polyethelene film occlusion. J Invest Dermatol. 1978;71:382–4.
Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66:14–21.
Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol. 1978;7:39–52. https://doi.org/10.1159/000401274 (PMID: 752456).
Goodwine J, Gil J, Doiron A, et al. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep. 2019;9:3763.
Davis SC, Mertz PM. Treatment of Wounds with an Oak Bark Formulation: Antimicrobial and Wound Healing Assessments. Ostomy Wound Mgt. 2008;54(10):16–25.
Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56(1):127–38.
Kanafani ZA, Perfect JR. Antimicrobial resistance: Resistance to antifungal agents: Mechanisms and clinical impact. Clin Infect Dis. 2008;46:120–8.
Khurana A, Sardana K, Chowdhary A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genet Biol. 2019;132: 103255. https://doi.org/10.1016/j.fgb.2019.103255 (Epub 2019 Jul 19 PMID: 31330295).
Pandolfi F, D’Acierno F, Bortolami M, De Vita D, Gallo F, De Meo A, Di Santo R, Costi R, Simonetti G, Scipione L. Searching for new agents active against Candida albicans biofilm: A series of indole derivatives, design, synthesis and biological evaluation. Eur J Med Chem. 2019;1(165):93–106.
Mohammadi Z, Giardino L, Palazzi F. Evaluation of the antifungal activity of four solutions used as a final rinse in vitro. Aust Endod J. 2013;39(1):31–4.
Shreaz S, Bhatia R, Khan N, Muralidhar S, Manzoor N, Khan LA. Influences of cinnamic aldehydes on H+ extrusion activity and ultrastructure of Candida. J Med Microbiol. 2013;62(Pt 2):232–40. https://doi.org/10.1099/jmm.0.036145-0 (Epub 2011 Oct 27 PMID: 22034160).
Paul-Satyaseela M, Hariharan P, Bharani T, Franklyne JS, Selvakumar T, Bharathimohan K, Kumar CV, Kachhadia V, Narayanan S, Rajagopal S, Balasubramanian G. Novel hydroxamates potentiated in vitro activity of fluconazole against Candida albicans. J Nat Sci Biol Med. 2017;8(1):119–24.
D’Arrigo M, Bisignano C, Irrera P, Smeriglio A, Zagami R, Trombetta D, Romeo O, Mandalari G. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp. BMC Complement Altern Med. 2019;19(1):6.
Sohnle P, Hahn B, Erdmann M. Effect of Fluconazole on Viability of Candida albicans over Extended Periods of Time. Antimic Agt Chemo. 1996;40(11):2622–5.
Mohd D, Koh S, Abdullah R, Azali A. Evidence of Potent Antibacterial Effect of Fermented Papaya Leaf against opportunistic skin Pathogenic Microbes. Food Res. 2020;4(Suppl. 6):112–7.
Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.
Davis SC, Mertz PM, Bilevich ED, Cazzaniga AL, Eaglstein WH. Early debridement of second-degree burn wounds enhances the rate of epithelization-an animal model to evaluate burn wound therapies. J Burn Care Rehabil. 1996;17(6 Pt 1):558–61. https://doi.org/10.1097/00004630-199611000-00014.
Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, et al. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen. 2008;16:23–9.
Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66(1):14–21.
Pippin MM, Madden ML. Tinea Cruris. In: StatPearls. Treasure Island: StatPearls Publishing; 2021.
Khiao In M, Richardson KC, Loewa A, Hedtrich S, Kaessmeyer S, Plendl J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat Histol Embryol. 2019;48(3):207–17.
Rafat Z, Hashemi SJ, Ahamdikia K, Daie Ghazvini R, Bazvandi F. Study of skin and nail Candida species as a normal flora based on age groups in healthy persons in Tehran-Iran. J Mycol Med. 2017;27(4):501–5. https://doi.org/10.1016/j.mycmed.2017.08.007 (Epub 2017 Sep 28 PMID: 28967539).
Shah S, Donze-Reiner T, Shah V. Diversity of navel microbiome in young adults. J Med Microbiol. 2020;69(5):721–7. https://doi.org/10.1099/jmm.0.001192 (Epub 2020 May 5 PMID: 32369006).
Calderone RA, Clancy CJ. Candida and Candidiasis. 2nd ed. Washington, DC: American Society of Microbiology; 2012.
Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One. 2011;6:e27317. https://doi.org/10.1371/journal.pone.0027317.
Percival SL, McCarty SM, Lipsky B. Biofilms and wounds: an overview of the evidence. Adv Wound Care (New Rochelle) 4:373–381. 11. Rhoads DD, Wolcott RD, Sun Y, Dowd SE. 2012. Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci. 2015;13:2535–50. https://doi.org/10.3390/ijms13032535.
Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G, Gardner SE, Grice EA. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing. mBio. 2016;7(5):e01058-16. https://doi.org/10.1128/mBio.01058-16.
Perlin DS, Shor E, Zhao Y. Update on antifungal drug resistance. Curr Clin Microbiol Rep. 2015;2:84–95.
Serpa R, Franca EJ, Furlaneto-Maia L, Andrade CG, Diniz A, Furlaneto MC. In vitro antifungal activity of the flavonoid baicalein against Candida species. Jour of Med Micro. 2012;61(Pt. 12):1704–8.
Uzun O, Kocagöz S, Cetinkaya Y, Arikan S, Unal S. In vitro activity of a new echinocandin, LY303366, compared with those of amphotericin B and fluconazole against clinical yeast isolates. Antimic Agt Chemo. 1997;41:1156–7.
Pakshir K, Zomorodian K, Zakaei A, Motamedi M, Ghiasi MR, Karamitalab M. Molecular identification and in vitro antifungal susceptibility testing of Candida species isolated from patients with onychomycosis. Curr med mycol. 2015;1(4):26.
Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA. Curcumin as a promising anticandidal of clinical interest. Can J Microbiol. 2011;57(3):204–10. https://doi.org/10.1139/W10-117 (PMID: 21358761).
Sohnle PG, Hahn BL, Erdmann MD. Effect of fluconazole on viability of Candida albicans over extended periods of time. Antimic Agt Chemo. 1996;40:2622–5.
Kontoyiannis DP, Lewis RE. Toward more effective antifungal therapy: The prospects of combination therapy. Br J Haematol. 2004;126:165–75.
Carrillo-Muñoz AJ, Finquelievich J, Tur-Tur C, Eraso E, Jauregizar N, Quindós G, et al. Combination antifungal therapy: A strategy for the management of invasive fungal infections. Rev Esp Quimioter. 2014;27:141–58.
Marchetti O, Moreillon P, Glauser MP, Bille J, Sanglard D. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimic Agt Chemo. 2000;44:2373–81.
Onyewu C, Eads E, Schell WA, Perfect JR, Ullmann Y, Kaufman G, et al. Targeting the calcineurin pathway enhances ergosterol biosynthesis inhibitors against Trichophyton mentagrophytes in vitro and in a human skin infection model. Antimic Agt Chemo. 2007;51:3743–6.
Davis SC, Li J, Gil J, Head C, Valdes J, Glinos GD, Solis M, Higa A, Pastar I. Preclinical evaluation of a novel silver gelling fiber dressing on Pseudomonas aeruginosa in a porcine wound infection model. Wound Rep Reg. 2019;27(4):360–5.
Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, Stoodley P, Swanson T, Tachi M, Wolcott RD, Panel ftGWBE. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Rep and Reg. 2017;25(5):744–57.
Ganesh K, Sinha M, Mathew-Steiner SS, Das A, Roy S, Sen CK. Chronic Wound Biofilm Model. Adv Wound Care. 2015;4(7):382–8.
