Cancer risk and the complexity of the interactions between environmental and host factors: HENVINET interactive diagrams as simple tools for exploring and understanding the scientific evidence
Tóm tắt
Development of graphical/visual presentations of cancer etiology caused by environmental stressors is a process that requires combining the complex biological interactions between xenobiotics in living and occupational environment with genes (gene-environment interaction) and genomic and non-genomic based disease specific mechanisms in living organisms. Traditionally, presentation of causal relationships includes the statistical association between exposure to one xenobiotic and the disease corrected for the effect of potential confounders. Within the FP6 project HENVINET, we aimed at considering together all known agents and mechanisms involved in development of selected cancer types. Selection of cancer types for causal diagrams was based on the corpus of available data and reported relative risk (RR). In constructing causal diagrams the complexity of the interactions between xenobiotics was considered a priority in the interpretation of cancer risk. Additionally, gene-environment interactions were incorporated such as polymorphisms in genes for repair and for phase I and II enzymes involved in metabolism of xenobiotics and their elimination. Information on possible age or gender susceptibility is also included. Diagrams are user friendly thanks to multistep access to information packages and the possibility of referring to related literature and a glossary of terms. Diagrams cover both chemical and physical agents (ionizing and non-ionizing radiation) and provide basic information on the strength of the association between type of exposure and cancer risk reported by human studies and supported by mechanistic studies. Causal diagrams developed within HENVINET project represent a valuable source of information for professionals working in the field of environmental health and epidemiology, and as educational material for students. Cancer risk results from a complex interaction of environmental exposures with inherited gene polymorphisms, genetic burden collected during development and non genomic capacity of response to environmental insults. In order to adopt effective preventive measures and the associated regulatory actions, a comprehensive investigation of cancer etiology is crucial. Variations and fluctuations of cancer incidence in human populations do not necessarily reflect environmental pollution policies or population distribution of polymorphisms of genes known to be associated with increased cancer risk. Tools which may be used in such a comprehensive research, including molecular biology applied to field studies, require a methodological shift from the reductionism that has been used until recently as a basic axiom in interpretation of data. The complexity of the interactions between cells, genes and the environment, i.e. the resonance of the living matter with the environment, can be synthesized by systems biology. Within the HENVINET project such philosophy was followed in order to develop interactive causal diagrams for the investigation of cancers with possible etiology in environmental exposure. Causal diagrams represent integrated knowledge and seed tool for their future development and development of similar diagrams for other environmentally related diseases such as asthma or sterility. In this paper development and application of causal diagrams for cancer are presented and discussed.
Tài liệu tham khảo
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide. IARC CancerBase No. 10. Lyon, France: International Agency for Research on Cancer. 2010, Available from: http://globocan.iarc.fr
Karim-Kosa HE, de Vriesa E, Soerjomatarama I, Lemmensa V, Sieslingc S, Coebergh JWW: Recent trends of cancer in Europe: A combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. EJC. 2008, 1345-89.
SEER Cancer Statistics Review, 1975-2006, National Cancer Institute. Edited by: Horner MJ, Ries LAG, Krapcho M, Neyman N, Aminou R, Howlader N, Altekruse SF, Feuer EJ, Huang L, Mariotto A, Miller BA, Lewis DR, Eisner MP, Stinchcomb DG, Edwards BK. 2009, Bethesda, MD, USA, based on November 2008 SEER data submission, posted to the SEER web site, [http://seer.cancer.gov/csr/1975_2006/]
American Cancer Society: Cancer facts and figures. 2009, ACS, Atlanta
Steliarova-Foucher E, Stiller , Kaatsch P, Berrino F, Coebergh JW, Lacour Band, Parkin M: The Lancet. 2004, 2097-2105.
Rudel RA, Perovich LJ: Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ. 2009, 43 (1): 170-181. 10.1016/j.atmosenv.2008.09.025.
Diaminti-Kandarakis ED, Bourguignon J-P, Guidice LC, Hauser R, Prins GS, Soto AM: Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Re. 2009, 293-42.
Titus-Ernstoff L, Troisi R, Hatch EE, Hyer M, Wise LA, Palmer JR: Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation. Epidemiology. 2008, 19 (2): 251-7. 10.1097/EDE.0b013e318163152a.
Hertz-Picciotto I, Herr CE, Yap PS, Dostal M, Shumway RH, Ashwood P, Lipsett M, Joad JP, Pinkerton KE, Šrám RJ: Air pollution and lymphocyte phenotype proportions in cord blood. Environ Health Perspect. 2005, 113: 1391-1398. 10.1289/ehp.7610.
Herr CEW, Dostal M, Ghosh R, Ashwood P, Lipsett M, Pinkerton KE, Sram R, Hertz-Picciotto I: Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths. Environmental Health. 2010, 9: 46-10.1186/1476-069X-9-46. doi:10.1186/1476-069X-9-46
Merlo DF, Wild CP, Kogevinas M, Kyrtopoulos S, Kleinjans J: NewGeneris: A European Study on Maternal Diet during Pregnancy and Child Health. Cancer Epidemiol Biomarkers Prev. 2009, 18 (1): 5-10. 10.1158/1055-9965.EPI-08-0876.
Kennedy D: Toxic dilemmas. Science. 2007, 318: 1217-10.1126/science.1151604.
Doll R: Epidemiological evidence of the effects of behaviour and the environment on the risk of human cancer. Recent Results Cancer Res. 1998, 154: 3-21. 10.1007/978-3-642-46870-4_1.
President’s Cancer Panel: 2008–2009 Annual Report. U.S. 2010. Department of Health and Human Services, National Institutes of Health, National Cancer Institute
Fleming J, Huang T, Toland A: The role of parental and grandparental epigenetic alterations in familial cancer risk. Perspect Cancer Res. 2008, 68 (22): 9116-21.
Bird A: Perceptions of epigenetics. Nature. 2007, 447: 396-398. 10.1038/nature05913.
REACH: Environment Directorate General, European Commission: REACH in brief [Internet]. 2007, Brussels (Belgium): EC, [cited 2009 May 19], [http://ec.europa.eu/environment/chemicals/reach/pdf/2007_02_reach_in_brief.pdf]
EHAP: European Parliament resolution on the European Environment and Health Action Plan 2004-2010. Official Journal of the European Union. 2005, C 304 E: 267-269.
Pershagen G, Akerblom G, Axelson O, Clavensjo B, Damber L, Desai G, Enflo A, Lagarde F, Mellander H, Svartengren M, Swedjemark G: Residential Radon Exposure and Lung Cancer in Sweden. New Eng J Med. 1994, 330: 59-164. 10.1056/NEJM199401063300111.
Catelinois O, Rogel A, Laurier D, Billon S, Hemon D, Verger P, Tirmarche M: Lung cancer Attributed to Indoor Radon Exposure in France: Impact of the Risk Models and Uncertainty Analysis. Environ Health Perspect. 2006, 114: 1361-1366. 10.1289/ehp.9070.
Kreienbrock L, Kreuzer M, Gerken M, Dingerkus G, Wellmann J, Keller G, Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RV, Klotz JB, Letourneau EG, Lynch CF, Lyon JI, Sandler DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinberg C, Wilcox HB: Residential Radon and Risk of Lung Cancer: a Combined Analysis of 7 North American Case-Control Studies. Epidemiology. 2005, 16 (2): 137-145. 10.1097/01.ede.0000152522.80261.e3.
Janssen MPM: Modeling ventilation and radon in new Dutch dwellings. Indoor Air. 2003, 13 (2): 118-127. 10.1034/j.1600-0668.2003.00157.x.
Barros-Dios JM, Barriero MA, Ruano-Ravina A, Figueiras A: Exposure to residential Radon and lung cancer in Spain: A populaton-based case-control study. Am J Epidemiol. 2002, 156: 548-555. 10.1093/aje/kwf070.
Coskeran T, Denman A, Phillips P, Gillmore G, Tornberg R: A New Methodology for Cost-Effectiveness Studies of Domestic radon remediation Programmes: Quality-adjusted Life-years Gained Within Primary Care Trusts in Central England. Sci Tot Env. 2006, 366 (1): 32-46. 10.1016/j.scitotenv.2005.12.020.
Horner MJ: SEER 9 areas and U.S. Mortality Files. National Center for Health Statistics, Centers for Disease Control and Prevention. 2010, based on November 2008 SEER data submission, posted to the SEER web site, [http://seer.cancer.gov/csr/1975_2006/]