Cancer cachexia prevention via physical exercise: molecular mechanisms

Journal of Cachexia, Sarcopenia and Muscle - Tập 4 Số 2 - Trang 111-124 - 2013
Douglas W. Gould1, Ian Lahart1, Amtul R. Carmichael2, Yiannis Koutedakis3,1, George S. Metsios4,3,1
1School of Sport, Performing Arts and Leisure, Department of Physical Activity, Exercise and Health University of Wolverhampton Walsall West Midlands
2Department of Surgery, Dudley Group of Hospitals NHS Trust Russell's Hall Hospital Dudley West Midlands
3Research Institute in Physical Performance and Rehabilitation Centre for Research and Technology Trikala Thessaly
4Department of Rheumatology, Dudley Group of Hospitals NHS Trust Russell's Hall Hospital Dudley West Midlands

Tóm tắt

Cancer cachexia is a debilitating consequence of disease progression, characterised by the significant weight loss through the catabolism of both skeletal muscle and adipose tissue, leading to a reduced mobility and muscle function, fatigue, impaired quality of life and ultimately death occurring with 25–30 % total body weight loss. Degradation of proteins and decreased protein synthesis contributes to catabolism of skeletal muscle, while the loss of adipose tissue results mainly from enhanced lipolysis. These mechanisms appear to be at least, in part, mediated by systemic inflammation. Exercise, by virtue of its anti‐inflammatory effect, is shown to be effective at counteracting the muscle catabolism by increasing protein synthesis and reducing protein degradation, thus successfully improving muscle strength, physical function and quality of life in patients with non‐cancer‐related cachexia. Therefore, by implementing appropriate exercise interventions upon diagnosis and at various stages of treatment, it may be possible to reverse protein degradation, while increasing protein synthesis and lean body mass, thus counteracting the wasting seen in cachexia.

Từ khóa


Tài liệu tham khảo

10.1093/qjmed/hci127

10.1152/physrev.00016.2008

10.1158/1078-0432.CCR-06-2307

10.1038/nrc927

10.1152/ajpendo.2001.281.2.E289

10.1016/S0149-2918(05)80001-3

10.1016/S0959-8049(97)10090-9

10.1038/bjc.1997.17

10.1097/00000658-198808000-00013

10.1152/ajpendo.00040.2007

10.1038/sj.bjc.6600086

10.1038/sj.bjc.6600493

10.1172/JCI114854

10.1016/S0959-8049(99)00273-7

10.1002/cbf.1540

MacDonald N, 2007, Cancer cachexia and targeting chronic inflammation: a unified approach to cancer treatment and palliative supportive care, J Support Oncol, 5, 157

10.1207/S15327914NC422_1

10.1002/(SICI)1098-1128(199905)19:3<223::AID-MED3>3.0.CO;2-N

10.1016/S0140-6736(00)04046-0

10.1590/S0100-879X2001000900009

10.1530/eje.0.1490129

10.1210/en.139.12.4998

10.1016/S0304-3835(98)00137-2

Llovera M, 1998, Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice, Mol Cell Endocrinol, 98, S0303

10.1096/fasebj.3.8.2721856

10.1210/jc.2008-1110

10.1016/j.bbrc.2004.04.010

10.1042/bj2400601

10.1172/JCI115767

10.1007/BF01262570

10.1016/S0021-9258(18)81372-2

10.1042/bj0890202

10.1172/JCI113033

10.1016/S0021-9258(19)42013-9

Metsios GS, 2006, Rheumatoid cachexia: causes, significance and possible interventions, Hospital Chronicles, 1, 20

10.1038/nrrheum.2010.105

10.1172/JCI117936

10.1006/bbrc.1998.9794

10.1161/01.ATV.18.8.1199

Aguila LF, 1999, TNF‐a impairs insulin signaling and insulin stimulation of glucose uptake in c2c12 muscle cells, Am J Physiol Endocrinol Metab, 276, E849, 10.1152/ajpendo.1999.276.5.E849

10.1210/jc.2006-0651

10.1042/CS20010270

10.1093/jn/129.1.227S

10.1097/00000658-200101000-00003

10.1042/bj2340237

10.1016/0026-0495(89)90100-5

10.1016/0026-0495(81)90022-6

10.1152/ajpregu.2001.280.5.R1518

10.1111/j.1469-7793.2003.00977.x

Tisdale MJ, 2004, The ubiquitin–proteasome pathway as a therapeutic target for muscle wasting, J Support Oncol, 3, 209

10.1172/JCI7300

10.1038/sj.bjc.6602780

10.1158/0008-5472.CAN-04-2102

10.1096/fj.02-0759com

10.1152/ajpregu.2000.279.4.R1165

Mantovani A, 2004, Cancer‐related anorexia cachexia syndrome and oxidative stress: an innovative approach beyond current treatment, Cancer Epidemiol Biomarkers Prev, 13, 1651, 10.1158/1055-9965.1651.13.10

10.1016/j.freeradbiomed.2010.09.006

10.1016/j.febslet.2005.02.017

10.1016/S0304-3835(02)00006-X

10.1016/j.febslet.2004.12.050

10.1002/j.1460-2075.1996.tb00524.x

10.1136/gut.2004.047563

10.1200/JCO.1995.13.11.2856

10.1093/ajcn/84.6.1463

10.1093/rheumatology/kem291

10.1038/sj.bjc.6690654

10.1200/JCO.2005.04.5724

10.1200/JCO.2005.02.148

10.1093/annonc/mdm364

10.1152/japplphysiol.00164.2004

10.1007/s00421-008-0849-9

10.1016/j.cyto.2008.10.018

10.1016/j.bbrc.2004.06.129

10.1096/fj.02-0670fje

Pedersen BK, 2000, Exercise and the immune system: regulation, integration, and adaptation, Physiol Rev, 80, 1056, 10.1152/physrev.2000.80.3.1055

Koch AJ, 2010, Immune response to exercise, Brazilian Journal of Boimorticity., 4, 92

10.1111/j.1469-7793.1999.287ad.x

10.1152/ajpendo.00255.2002

10.1111/j.1469-7793.1998.949bp.x

10.1007/s12192-010-0192-z

10.1111/j.1469-7793.2000.00237.x

10.1096/fj.01-0507fje

10.1096/fj.01-0876rev

10.1111/j.1469-7793.2001.0329c.xd

10.1186/ar3064

10.1152/ajpendo.00074.2003

10.1111/j.1469-7793.2000.00157.x

10.1111/j.1469-7793.2001.00633.x

10.1016/j.bbrc.2003.09.048

10.1152/ajpendo.1997.273.1.E85

Peake J, 2005, Characterization of inflammatory responses to eccentric exercise in humans, Exerc Immunol Rev, 11, 64

10.1113/jphysiol.2004.066779

Pedersen M, 2004, Does the aging skeletal muscle maintain its endocrine function?, Exerc Immunol Rev, 10, 42

10.1152/jappl.2000.89.4.1499

10.1152/jappl.1994.77.1.93

Nehlsen-Cannarella SL, 1997, Carbohydrate and the cytokine response to 2.5 h of running, J Appl Physiol, 82, 1662, 10.1152/jappl.1997.82.5.1662

10.1111/j.1469-7793.2000.t01-1-00647.x

10.1152/ajpcell.2001.280.4.C769

10.1182/blood.V75.1.40.40

Matthys P, 1995, Anti‐gamma interferon and anti interleukin‐6 antibodies affect staphylococcal enterotoxin B‐induced weight loss, hypoglycemia, and cytokine release in d‐galactosamine‐sensitized and unsensitized mice, Infect Immun, 63, 1158, 10.1128/iai.63.4.1158-1164.1995

10.1084/jem.179.5.1529

10.1378/chest.117.4.1162

10.1086/515032

10.1046/j.1365-2222.1999.00456.x

Bogdan C, 1992, Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor‐beta and interleukin‐10, THEJ OURNALO F BIOLOGICACLH EMISTRY, 267, 23301

10.1056/NEJM200009073431011

10.1016/1043-4666(93)90032-Z

10.1073/pnas.89.11.4845

10.1155/2008/109502

10.1210/jc.2007-1761

10.1016/j.yjmcc.2006.08.005

10.1016/j.jinf.2007.05.177

10.1016/S0024-3205(99)00242-8

10.1046/j.1525-1373.1999.d01-145.x

Lawler JM, 1994, Acute exercise and skeletal muscle antioxidant and metabolic enzymes: effects of fiber type and age, Am J Physiol, 265, R1344

10.1152/ajpregu.1994.266.2.R375

10.1155/2011/540458

10.1016/j.mad.2006.12.006

10.1007/s004210000342

10.1016/0003-9861(88)90623-6

Duncan K. Harris S. and Ardies C.M. Running exercise may reduce risk for lung and liver cancer by inducing activity of antioxidant and phase II enzymes. Cancer Letters. 1997;116.

10.1164/ajrccm.156.5.96-11035

10.1007/PL00013799

10.1152/physrev.00031.2007

10.1152/ajpregu.1997.272.1.R363

10.1046/j.1365-201X.1997.576351000.x

10.1152/jappl.1992.73.4.1265

10.2165/00007256-199315030-00005

10.1016/0891-5849(95)00017-R

10.1073/pnas.252626999

10.1073/pnas.84.16.5918

10.1016/0014-5793(93)80353-V

10.1080/15216549800203812

10.1136/bjsm.33.4.264

10.1073/pnas.0831097100

10.1016/S0899-9007(00)00407-X

10.1002/bjs.1800741124

10.1093/ajcn/38.6.879

10.1152/japplphysiol.01219.2001

10.1016/j.ejim.2010.05.003

10.1016/j.metabol.2005.05.013

10.1210/jc.85.7.2463

Ren J, 1994, Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin‐stimulated glycogen storage in muscle, J Biol Chem, 269, 14396, 10.1016/S0021-9258(17)36636-X

Ivy JL, 2004, Muscle insulin resistance amended with exercise training: role of GLUT4 expression, MEDICINE & SCIENCE IN SPORTS & EXERCISE, 36, 1207

10.1152/japplphysiol.01489.2005

10.2337/diabetes.48.8.1667

10.2337/diabetes.48.5.1192

Throell A, 1999, Exercise and insulin cause GLUT‐4 translocation in human skeletal muscle, Am J Physiol Endocrinol Metab, 277, E733, 10.1152/ajpendo.1999.277.4.E733

10.1152/japplphysiol.01266.2001

10.1152/ajpendo.1997.272.1.E118

10.1152/ajpcell.1993.264.1.C146

10.1152/ajpendo.1999.277.1.E1

10.1152/jappl.1999.87.5.1990

10.1152/jappl.2000.88.3.1072

10.1146/annurev.cellbio.14.1.167

Liu M, 1994, Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube‐specific expression of the rat GLUT4 muscle‐adipose facilitative glucose transporter, J Biol Chem, 269, 28514, 10.1016/S0021-9258(18)46957-8

10.1074/jbc.273.23.14285

10.2337/diabetes.53.5.1208

10.1093/emboj/19.9.1963

10.1073/pnas.260501497

10.1152/ajpendo.2000.278.4.E620

10.1152/ajpendo.2001.280.2.E203

10.1113/jphysiol.2008.153916

10.1042/cs0610627

10.1042/bst0080499

10.1113/jphysiol.2005.093690

10.1152/ajpendo.1995.268.3.E514

10.1074/jbc.M413732200

10.1113/jphysiol.2006.113175

Chesley A, 1991, Changes in human muscle protein synthesis after resistance exercise, J Appl Physiol, 73, 1383, 10.1152/jappl.1992.73.4.1383

10.1152/ajpendo.1997.273.1.E99

10.1152/jappl.1996.81.6.2509

10.1152/jappl.1998.84.5.1716

10.1074/jbc.270.20.12109

10.1042/bj2100089

10.1152/ajpendo.2001.280.3.E383

Borst SE, 2000, Effects of resistance training on insulin‐like growth factor‐I and IGF binding proteins, Med Sci Sports Exerc, 33, 648

10.1016/S1097-2765(04)00211-4

10.1126/science.296.5573.1655

10.1101/gad.13.22.2905

10.1128/MCB.20.23.8983-8995.2000

10.1038/nrc839

10.1091/mbc.01-12-0584

10.1038/ncb1101-1014

10.1042/bj3440427

10.1074/jbc.273.51.34496

10.1152/ajpendo.00582.2007

10.1113/jphysiol.2008.163816

10.1073/pnas.142166599

10.1006/bbrc.2001.5762

10.1152/ajpendo.1999.277.4.E724

10.1152/japplphysiol.01383.2003

10.1016/j.cell.2005.02.031

10.1152/ajpendo.00141.2006

10.1152/ajpcell.1999.276.1.C120

10.1007/s00421-007-0564-y

Mustian KM, 2003, A 4‐week home‐based aerobic and resistance exercise program during radiation therapy a pilot randomized clinical trial, J Support Oncol, 7, 158

10.1200/JCO.2003.09.534

10.1249/01.mss.0000233803.48691.8b

10.1038/sj.pcan.4500991

10.1200/JCO.2006.08.2024

10.1158/1055-9965.EPI-04-0736

10.1186/1471-2407-10-155

10.1111/j.1600-0838.2005.00503.x

10.1200/JCO.2007.15.4963

10.1152/ajpendo.1999.277.1.E135

Yarasheski KE, 1999, Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men≥ 76 yr old, Am J Physiol Endocrinol Metab, 277, E118, 10.1152/ajpendo.1999.277.1.E118

10.1136/bjsm.34.1.18

Hakkinen K, 2001, Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance power strength training in middle‐aged and older men and women, Acta Physiol Scand, 171, 51

10.1001/jama.1990.03440220053029

10.1016/S0031-9406(05)66916-7

10.1152/japplphysiol.00416.2003

10.1681/ASN.2006121329

10.1097/00005768-200111000-00003

10.1001/archinte.166.11.1225

Yarasheski KE, 2001, Resistance exercise training reduces hypertriglyceridemia in HIV‐infected men treated with antiviral therapy, J Appl Physiol, 90, 133, 10.1152/jappl.2001.90.1.133