Can single knockouts accurately single out gene functions?

BMC Systems Biology - Tập 2 - Trang 1-10 - 2008
David Deutscher1,2, Isaac Meilijson3, Stefan Schuster4, Eytan Ruppin2
1Google Haifa, Haifa, 31905
2School of Computer Sciences and School of Medicine, Tel Aviv University, Tel-Aviv, Israel
3School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
4Faculty of Biology and Pharmaceutics, Section of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany

Tóm tắt

When analyzing complex biological systems, a major objective is localization of function – assessing how much each element contributes to the execution of specific tasks. To establish causal relationships, knockout and perturbation studies are commonly executed. The vast majority of studies perturb a single element at a time, yet one may hypothesize that in non-trivial biological systems single-perturbations will fail to reveal the functional organization of the system, owing to interactions and redundancies. We address this fundamental gap between theory and practice by quantifying how misleading the picture arising from classical single-perturbation analysis is, compared with the full multiple-perturbations picture. To this end we use a combination of a novel approach for quantitative, rigorous multiple-knockouts analysis based on the Shapley value from game theory, with an established in-silico model of Saccharomyces cerevisiae metabolism. We find that single-perturbations analysis misses at least 33% of the genes that contribute significantly to the growth potential of this organism, though the essential genes it does find are responsible for most of the growth potential. But when assigning gene contributions for individual metabolic functions, the picture arising from single-perturbations is severely lacking and a multiple-perturbations approach turns out to be essential. The multiple-perturbations investigation yields a significantly richer and more biologically plausible functional annotation of the genes comprising the metabolic network of the yeast.

Tài liệu tham khảo

Pearl J: Causality Models, Reasoning, and Inference. 2000, Cambridge: University of Cambridge Press Pe'er D, Regev A, Elidan G, Friedman N: Inferring subnetworks from perturbed expression profiles. Bioinformatics. 2000, 17 (Suppl 1): S215-S224. Chen L, Emmert-Streib F, Storey J: Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol. 2007, 8 (10): R219- Carpenter AE, Sabatini DM: Systematic Genome-Wide Screens Of Gene Function. Nat Rev Genet. 2004, 5 (1): 11-22. Giaever G, Chu A, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin A, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K, Flaherty P, Foury F, Garfinkel D, Gerstein M, Gotte D, Güldener U, Hegemann J, Hempel S, Herman Z, Jaramillo D, Kelly D, Kelly S, Kötter P, LaBonte D, Lamb D, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi S, Revuelta J, Roberts C, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker D, Sookhai-Mahadeo S, Storms R, Strathern J, Valle G, Voet M, Volckaert G, Wang C, Ward T, Wilhelmy J, Winzeler E, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke J, Snyder M, Philippsen P, Davis R, Johnston M: Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002, 418 (6896): 387-391. Winzeler E, Shoemaker D, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke J, Bussey H, Chu A, Connelly C, Davis K, Dietrich F, Dow S, El Bakkoury M, Foury F, Friend S, Gentalen E, Giaever G, Hegemann J, Jones T, Laub M, Liao H, Liebundguth N, Lockhart D, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta J, Riles L, Roberts C, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms R, Ve'ronneau S, Voet M, Volckaert G, Ward T, Wysocki R, Yen G, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis R: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. Deutscher D, Meilijson I, Kupiec M, Ruppin E: Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet. 2006, 38 (9): 993-998. Kuepfer L, Sauer U, Blank L: Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 2005, 15 (10): 1421-1430. Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S: Structural robustness of metabolic networks with respect to multiple knockouts. J Theor Biol. 2008, 252: 433-441. Tong A, Lesage G, Bader G, Ding H, Xu H, Xin X, Young J, Berriz G, Brost R, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg D, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson J, Lu H, Ménard P, Munyana C, Parsons A, Ryan O, Tonikian R, Roberts T, Sdicu A, Shapiro J, Sheikh B, Suter B, Wong S, Zhang L, Zhu H, Burd C, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth F, Brown G, Andrews B, Bussey H, Boone C: Global Mapping of the Yeast Genetic Interaction Network. Science. 2004, 303: 808-813. Segrè D, DeLuna A, Church G, Kishony R: Modular epistasis in yeast metabolism. Nat Genet. 2004, 37: 77-83. Thiele I, Vo T, Price N, Palsson BØ: An expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single and double deletion mutants. J Bacteriol. 2005, 187 (16): 5818-5830. Keinan A, Sandbank B, Hilgetag C, Meilijson I, Ruppin E: Fair attribution of functional contribution in artificial and biological networks. Neural Comput. 2004, 16 (9): 1887-1915. Roth A: Axiomatic models of bargaining. 1979, Berlin: Springer-Verlag Feigenbaum J, Papadimitriou C, Shenker S: Sharing the cost of multicast transmisions. Journal of Computer and System Sciences. 2001, 63: 21-41. Gefeler O, Land M, Eide G: Averaging atributable fractions in the multifactorial situation: Asumptions and interpretation. J Clin Epidemiol. 1998, 51 (5): 437-441. Shubik M: Game theory in the social sciences. 1985, Cambridge, MA: MIT Press Keinan A, Sandback B, Kaufman A, Sachs N, Hilgetag C, Ruppin E: Fair Localization of Function via Multi-lesion Analysis. Neuroinformatics. 2004, 2: 163-168. Kaufman A, Keinan A, Meilijson I, Kupiec M, Ruppin E: Quantitative analysis of genetic and neuronal multi-perturbation experiments. PLoS Comput Biol. 2005 Nov;1(6):e64. 2005, 1 (6): e64- Keinan A, Sandbank B, Hilgetag C, Meilijson I, Ruppin E: Axiomatic Scalable Neurocontroller Analysis Via the Shapley Value. Artif Life. 2006, 12 (3): 333-352. Price N, Papin J, Schilling C, Palsson BØ: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 2003, 21 (4): 162-169. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J: Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Res. 2003, 13: 244-253. Famili I, Förster J, Nielsen J, Palsson BØ: Saccharomyces cerevisiae Phenotypes can be Predicted using Constraint-based Analysis of a Genome-scale Reconstructed Metabolic Network. Proc Natl Acad Sci U S A. 2003, 100: 13134-13139. Edwards J, Ibarra R, Palsson BØ: In silico predictions of Escherichi coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001, 19 (2): 125-130. Förster J, Famili I, Palsson BØ, Nielsen J: Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS. 2003, 7 (2): 193-202. Edwards J, Palsson BØ: The Escherichia coli MG1655 in silico Metabolic Genotype: Its Definition, Characteristics, and Capabilities. Proc Natl Acad Sci U S A. 2000, 97: 5528-5533. Burgard A, Maranas C: Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng. 2003, 82 (6): 670-677. Schuster S, Fell D: Modelling and simulating metabolic networks. Bioinformatics: From Genomes to Therapies. Edited by: Lengauer T. 2007, 2: 755-805. Weinheim: Wiley-VCH Shlomi T, Herrgard M, Portnoy V, Naim E, Palsson BØ, Sharan R, Ruppin E: Systematic condition-dependent annotation of metabolic genes. Genome Res. 2007, 17: 1626-1633. Yosef N, Kaufman A, Ruppin E: Inferring functional pathways from multi-perturbation data. Bioinformatics. 2006, 22 (14): e539-e546. Varma A, Palsson BØ: Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Bio/Technology. 1994, 12: 994-998. Kauffman K, Prakash P, Edwards J: Advances in flux balance analysis. Curr Opin Biotechnol. 2003, 14: 491-496. Segrè D, Vitkup D, Church G: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA. 2002, 99: 15112-15117. Shlomi T, Berkman O, Ruppin E: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA. 2005, 102: 7695-7700. Shapley L: A Value for n-Person Games. Contributions to the Theory of Games. Edited by: Kuhn H, Tucker A. 1953, 1: 307-318. Princeton: Princeton University Press Elena S, Lenski R: Test of synergistic interactions among deleterious mutations in bacteria. Nature. 1997, 390: 395-398. Benjamini Y, Hochberg Y: Controlling The False Discovery Rate – A Practical And Powerful Approach To Multiple Testing. J Roy Stat Soc B Met. 1995, 57: 289-300.