Liệu chuỗi gen có thể xác định chức năng?

Genome Biology - Tập 1 - Trang 1-10 - 2000
John A Gerlt1, Patricia C Babbitt2
1Departments of Biochemistry and Chemistry, University of Illinois, Urbana, USA
2Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, USA

Tóm tắt

Việc chú thích chức năng cho các protein được xác định trong các dự án giải mã gen được dựa trên sự tương đồng với các đồng hình trong các cơ sở dữ liệu. Do các chiến lược phát sinh phân ly có thể xảy ra, các enzyme đồng hình thường không xúc tác phản ứng giống nhau, và chúng tôi kết luận rằng việc gán chức năng chỉ dựa trên thông tin chuỗi nên được xem xét với một chút hoài nghi.

Từ khóa

#protein #chú thích chức năng #đồng hình #enzyme #giải mã gen

Tài liệu tham khảo

Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al: The complete genome sequence of Escherichia coli K-12. Science. 1997, 277: 1453-1474. 10.1126/science.277.5331.1453. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, et al: The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997, 390: 249-256. 10.1038/36786. Genome sequence of the nematode C. elegans : a platform for investigating biology. The C. elegans Sequencing Consortium. Science. 1998, 282: 2012-2018. 10.1126/science.282.5396.2012. Eisen JA: Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res. 1998, 8: 163-167. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA. 1999, 96: 4285-4288. 10.1073/pnas.96.8.4285. Karp PD: What we do not know about sequence analysis and sequence databases. Bioinformatics. 1998, 14: 753-754. 10.1093/bioinformatics/14.9.753. Horowitz NH: On the evolution of biochemical syntheses. Proc Natl Acad Sci USA. 1945, 31: 153-157. Horowitz NH: Evolving Genes and Proteins. New York: Academic Press. 1965 Altamirano MM, Blackburn JM, Aguayo C, Fersht AR: Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold. Nature. 2000, 403: 617-622. 10.1038/35001001. Lang D, Thoma R, Henn-Sax M, Sterner R, Wilmanns M: Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science. 2000, 289: 1546-1550. 10.1126/science.289.5484.1546. Babbitt PC, Gerlt JA: Understanding enzyme superfamilies. Chemistry as the fundamental determinant in the evolution of new catalytic activities. J Biol Chem. 1997, 272: 30591-30594. 10.1074/jbc.272.49.30591. Gerlt JA, Babbitt PC: Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis. Curr Opin Chem Biol. 1998, 2: 607-612. 10.1016/S1367-5931(98)80091-4. Perona JJ, Craik CS: Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem. 1997, 272: 29987-29990. 10.1074/jbc.272.48.29987. Babbitt PC, Hasson MS, Wedekind JE, Palmer DR, Barrett WC, Reed GH, Rayment I, Ringe D, Kenyon GL, Gerlt JA: The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids. Biochemistry. 1996, 35: 16489-16501. 10.1021/bi9616413. Palmer DR, Garrett JB, Sharma V, Meganathan R, Babbitt PC, Gerlt JA: Unexpected divergence of enzyme function and sequence: "N-acylamino acid racemase" is o-succinylbenzoate synthase. Biochemistry. 1999, 38: 4252-4258. 10.1021/bi990140p. O'Brien PJ, Herschlag D: Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol. 1999, 6: R91-R105. 10.1016/S1074-5521(99)80033-7. Gerlt JA, Babbitt PC: Divergent evolution of enzyme function: mechanistically diverse superfamilies and functionally distinct suprfamilies. Ann Rev Biochem. 2001, Traut TW, Temple BR: The chemistry of the reaction determines the invariant amino acids during the evolution and divergence of orotidine 5'-monophosphate decarboxylase. J Biol Chem. 2000, 275: 28675-28681. 10.1074/jbc.M003468200. Broun P, Shanklin J, Whittle E, Somerville C: Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science. 1998, 282: 1315-1317. 10.1126/science.282.5392.1315. Bahnson BJ, Anderson VE: Isotope effects on the crotonase reaction. Biochemistry. 1989, 28: 4173-4181. D'Ordine RL, Bahnson BJ, Tonge PJ, Anderson VE: Enoyl-coenzyme A hydratase-catalyzed exchange of the alpha-protons of coenzyme A thiol esters: a model for an enolized intermediate in the enzyme-catalyzed elimination?. Biochemistry. 1994, 33: 14733-14742. Hofstein HA, Feng Y, Anderson VE, Tonge PJ: Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase. Biochemistry. 1999, 38: 9508-9516. 10.1021/bi990506y. Engel CK, Mathieu M, Zeelen JP, Hiltunen JK, Wierenga RK: Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket. EMBO J. 1996, 15: 5135-5145. Engel CK, Kiema TR, Hiltunen JK, Wierenga RK: The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J Mol Biol. 1998, 275: 859-847. 10.1006/jmbi.1997.1491. Gerlt JA, Gassman PG: An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: the importance of late transition states in concerted mechanisms. J Am Chem Soc. 1993, 115: 11552-11569. Xiang H, Luo L, Taylor KL, Dunaway-Mariano D: Interchange of catalytic activity within the 2-enoyl-coenzyme A hydratase/isomerase superfamily based on a common active site template. Biochemistry. 1999, 38: 7638-7652. 10.1021/bi9901432. Haller T, Buckel T, Retey J, Gerlt JA: Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry. 2000, 39: 4622-4629. 10.1021/bi992888d. Benning MM, Taylor KL, Liu RQ, Yang G, Xiang H, Wesenberg G, Dunaway-Mariano D, Holden HM: Structure of 4-chlorobenzoyl coenzyme A dehalogenase determined to 1.8 Å resolution: an enzyme catalyst generated via adaptive mutation. Biochemistry. 1996, 35: 8103-8109. 10.1021/bi960768p. Modis Y, Filppula SA, Novikov DK, Norledge B, Hiltunen JK, Wierenga RK: The crystal structure of dienoyl-CoA isomerase at 1.5 Å resolution reveals the importance of aspartate and glutamate sidechains for catalysis. Structure. 1998, 6: 957-970. 10.1016/S0969-2126(98)00098-7. Benning MM, Haller T, Gerlt JA, Holden HM: New reactions in the crotonase superfamily: structure of methylmalonyl CoA decarboxylase from Escherichia coli. Biochemistry. 2000, 39: 4630-4639. 10.1021/bi9928896. Sharma V, Suvarna K, Meganathan R, Hudspeth ME: Menaquinone (vitamin K2) biosynthesis: nucleotide sequence and expression of the menB gene from Escherichia coli. J Bacteriol. 1992, 174: 5057-5062. Pelletier DA, Harwood CS: 2-Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J Bacteriol. 1998, 180: 2330-2336. Muller-Newen G, Janssen U, Stoffel W: Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue. Eur J Biochem. 1995, 228: 68-73. Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ: Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem. 1998, 273: 4163-4170. 10.1074/jbc.273.7.4163. Eichler K, Bourgis F, Buchet A, Kleber HP, Mandrand-Berthelot MA: Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol. 1994, 13: 775-786. Hawes JW, Jaskiewicz J, Shimomura Y, Huang B, Bunting J, Harper ET, Harris RA: Primary structure and tissue-specific expression of human beta- hydroxyisobutyryl-coenzyme A hydrolase. J Biol Chem. 1996, 271: 26430-26434. 10.1074/jbc.271.42.26430. Murzin AG: How far divergent evolution goes in proteins. Curr Opin Struct Biol. 1998, 8: 380-387. 10.1016/S0959-440X(98)80073-0. Wang J, Hartling JA, Flanagan JM: The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell. 1997, 91: 447-456. 10.1016/S0092-8674(00)80431-6. Palmer DR, Gerlt JA: Evolution of enzymatic activities: multiple pathways for generating and partitioning a common enolic intermediate by glucarate dehydratase from Pseudomonas putida. J Am Chem Soc. 1996, 118: 10323-10324. 10.1021/ja962126v. Palmer DR, Hubbard BK, Gerlt JA: Evolution of enzymatic activities in the enolase superfamily: partitioning of reactive intermediates by (D)-glucarate dehydratase from Pseudomonas putida. Biochemistry. 1998, 37: 14350-14357. 10.1021/bi981122v. Babbitt PC, Mrachko GT, Hasson MS, Huisman GW, Kolter R, Ringe D, Petsko GA, Kenyon GL, Gerlt JA: A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids. Science. 1995, 267: 1159-1161. Wieczorek SW, Kalivoda KA, Clifton JG, Ringe D, Petsko GA, Gerlt JA: Evolution of enzymatic activities in the enolase superfamily: identification of a "new" general acid catalyst in the active site of D-galactonate dehydratase from Escherichia coli. J Am Chem Soc. 1999, 121: 4540-4541. 10.1021/ja990500w. Kwon O, Bhattacharyya DK, Meganathan R: Menaquinone (vitamin K2) biosynthesis: overexpression, purification, and properties of o-succinylbenzoyl-coenzyme A synthetase from Escherichia coli. J Bacteriol. 1996, 178: 6778-6781. Thompson TB, Garrett JB, Taylor EA, Meganathan R, Gerlt JA, Rayment I: Evolution of enzymatic activity in the enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate. Biochemistry. 2000, 39: 10662-10676. 10.1021/bi000855o. Tokuyama S, Hatano K: Purification and properties of thermostable N-acylamino acid racemase from Amycolatopsis sp. TS-1-60. Appl Microbiol Biotechnol. 1995, 42: 853-859. 10.1007/s002530050342. Wilmanns M, Priestle JP, Niermann T, Jansonius JN: Three-dimensional structure of the bifunctional enzyme phosphoribosy-lanthranilate isomerase: indoleglycerolphosphate synthase from Escherichia coli refined at 2.0 Å resolution. J Mol Biol. 1992, 223: 477-507. Fani R, Lio P, Lazcano A: Molecular evolution of the histidine biosynthetic pathway. J Mol Evol. 1995, 41: 760-774. Fani R, Tamburini E, Mori E, Lazcano A, Lio P, Barberio C, Casalone E, Cavalieri D, Perito B, Polsinelli M: Paralogous histidine biosynthetic genes: evolutionary analysis of the Saccharomyces cerevisiae HIS6 and HIS7 genes. Gene. 1997, 197: 9-17. 10.1016/S0378-1119(97)00146-7. Jurgens C, Strom A, Wegener D, Hettwer S, Wilmanns M, Sterner R: Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc Natl Acad Sci USA. 2000, 97: 9925-9930. 10.1073/pnas.160255397. Radzicka A, Wolfenden R: A proficient enzyme. Science. 1995, 267: 90-93. Harris P, Navarro Poulsen JC, Jensen KF, Larsen S: Structural basis for the catalytic mechanism of a proficient enzyme: orotidine 5'-monophosphate decarboxylase. Biochemistry. 2000, 39: 4217-4224. 10.1021/bi992952r. Appleby TC, Kinsland C, Begley TP, Ealick SE: The crystal structure and mechanism of orotidine 5'-monophosphate decarboxylase. Proc Natl Acad Sci USA. 2000, 97: 2005-2010. 10.1073/pnas.259441296. Wu N, Mo Y, Gao J, Pai EF: Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc Natl Acad Sci USA. 2000, 97: 2017-2022. 10.1073/pnas.050417797. Miller BG, Hassell AM, Wolfenden R, Milburn MV, Short SA: Anatomy of a proficient enzyme: the structure of orotidine 5'-monophosphate decarboxylase in the presence and absence of a potential transition state analog. Proc Natl Acad Sci USA. 2000, 97: 2011-2016. 10.1073/pnas.030409797. Miller BG, Smiley JA, Short SA, Wolfenden R: Activity of yeast orotidine-5'-phosphate decarboxylase in the absence of metals. J Biol Chem. 1999, 274: 23841-23843. 10.1074/jbc.274.34.23841. Cui W, DeWitt JG, Miller SM, Wu W: No metal cofactor in orotidine 5'-monophosphate decarboxylase. Biochem Biophys Res Commun. 1999, 259: 133-135. 10.1006/bbrc.1999.0737. Kato N, Ohashi H, Tani Y, Ogata K: 3-Hexulosephosphate synthase from Methylomonas aminofaciens 77a. Purification, properties and kinetics. Biochim Biophys Acta. 1978, 523: 236-244. 10.1016/0005-2744(78)90026-8.