Can inducible resistance in plants cause herbivore aggregations? Spatial patterns in an inducible plant/herbivore model

Ecology - Tập 96 Số 10 - Trang 2758-2770 - 2015
Kurt E. Anderson1, Brian D. Inouye2, Nora Underwood2
1Department of Biology, University of California, Riverside, California 92521, USA
2Department of Biological Science, Florida State University, Tallahassee, Florida 32306 USA

Tóm tắt

Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all models examined, where patterns manifested as wave‐like aggregations of herbivores and variation in induction levels. Patterns arose when herbivores moved away from highly induced plants, there was a lag between damage and deployment of induced resistance, and the relationship between herbivore density and strength of the induction response had a sigmoid shape. These mechanisms influenced pattern formation regardless of the assumed functional relationship between resistance and herbivore recruitment and mortality. However, in models where induction affected herbivore mortality, large‐scale herbivore population cycles driven by the mortality response often co‐occurred with smaller scale spatial patterns driven by herbivore movement. When the mortality effect dominated, however, spatial pattern formation was completely replaced by spatially synchronized herbivore population cycles. Our results present a new type of ecological pattern formation driven by induced trait variation, consumer behavior, and time delays that has broad implications for the community and evolutionary ecology of plant defenses.

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-2656.2007.01263.x

10.1016/j.tpb.2007.09.006

10.1515/9780691228198-006

10.1111/j.1461-0248.2011.01727.x

10.1007/BF00317291

10.1111/j.1365-2311.1986.tb00300.x

10.1007/b102508

10.1103/PhysRevE.63.066102

10.1038/20676

10.1890/0012-9658(1998)079[1479:PCISMT]2.0.CO;2

10.1103/PhysRevE.80.030902

10.1023/A:1022673726325

10.1007/s12080-011-0139-8

10.1086/284953

10.1007/BF00388079

10.1111/j.1365-2311.1985.tb00544.x

10.1073/pnas.1300759110

10.1126/science.1252753

10.1111/j.1438-8677.2009.00234.x

Gurney W. S. C., 1998, Ecological dynamics

10.1086/282146

10.1073/pnas.1200363109

10.1111/j.1461-0248.2007.01093.x

10.1007/s00442-007-0692-4

10.1111/j.1365-2435.2010.01789.x

10.1111/j.1570-7458.2007.00594.x

10.1890/0012-9658(2006)87[922:DRISVA]2.0.CO;2

10.1016/j.tpb.2007.02.002

10.1073/pnas.1222339110

10.1007/s00285-011-0470-0

10.1890/06-1585

10.2307/3545843

10.1007/s00442-007-0703-5

10.1086/286039

Murray J. D., 2003, Mathematical biology. Third edition, 10.1007/b98869

10.1007/s00442-011-2023-z

10.1111/j.0030-1299.2004.12768.x

10.1023/A:1005469724427

10.1098/rspb.2012.2646

10.1007/s00442-013-2795-4

10.1146/annurev.es.11.110180.000353

10.1007/s00442-012-2326-8

10.1007/s12080-012-0173-1

10.1111/j.0906-7590.2008.05365.x

10.1111/j.1365-2311.2012.01404.x

10.1007/s11538-010-9533-4

10.1007/BF00377360

10.1371/journal.pone.0004697

10.1046/j.0021-8790.2001.00586.x

10.1007/s00442-002-0885-9

10.1046/j.1365-2311.2001.00324.x

10.1063/1.3692963

10.1515/9780691228198

10.1086/303174

10.1034/j.1600-0706.2000.890210.x

10.1111/j.1600-0706.2010.18578.x

10.1111/j.1365-2435.2012.02055.x

10.1890/03-0290

10.1086/340602

10.1111/j.1365-2311.2007.00943.x

10.1890/04-0313

10.1007/s12080-013-0176-6

Walters D., 2011, Plant defense: warding off attack by pathogens, herbivores and parasitic plants. First edition

10.1086/286106

Xinze L., 2013, Delay-driven pattern formation in a reaction–diffusion predator–prey model incorporating a prey refuge, Journal of Statistical Mechanics: Theory and Experiment, 2013

10.1078/1439-1791-00135