Can Confinement-Induced Variations in the Viscous Dissipation be Measured?

Tribology Letters - Tập 48 - Trang 1-9 - 2012
Sissi de Beer1, Wouter K. den Otter2, Dirk van den Ende1, Wim J. Briels2, Frieder Mugele1
1Physics of Complex Fluids and MESA + Institute for Nanotechnology, Department of Science and Technology, University of Twente, Enschede, The Netherlands
2Computational Biophysics, Department of Science and Technology, University of Twente, Enschede, The Netherlands

Tóm tắt

Liquids confined to molecular scales become anisotropic and often show pronounced self-organization such as layering. Although this effect is well accepted, it is still debated if confinement induces measurable changes of viscous friction. We use molecular dynamics to address this issue by simulating a Lennard-Jones liquid confined between a solid cylinder and an atomically smooth surface. The simulations reproduce the well-established variations of normal force, density, and diffusivity with the distance between wall and cylinder. We find high diffusivity and low density when the numbers of layers is in between integers. This observation seems to contradict most experimental results on the effective damping between atomic force microscope tips and substrates when interpreting them within continuum hydrodynamics used to connect liquid viscosity and diffusivity. This contradiction is resolved by directly extracting the damping that the tip experiences, which we achieve by using the fluctuation-dissipation theorem; as in experiment, we find local minima in the damping near integer numbers of molecular layers and maxima in between. These variations correlate with distinct structural changes in the microscopic order of the fluid. We reconfirm that constitutive equations valid at macroscopic scales cannot be used to interpret confined liquids and finally conclude that viscous friction displays measurable, non-monotonic behavior with the degree of confinement.

Tài liệu tham khảo

Persson, B.N.J., Mugele, F.: Squeeze-out and wear: fundamental principles and applications. J. Phys. Condens. Matter 16, R295 (2004) Müser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187 (2003) Chan, D.Y.C., Horn, R.G.: The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83, 5311 (1985) Horn, R.G., Israelachvili, J.N.: Direct measurement of forces due to solvent structure. Chem. Phys. Lett. 71, 192 (1980) Mo, H., Evmenenko, G., Dutta, P.: Ordering of liquid squalane near a solid surface. Chem. Phys. Lett. 415, 106 (2005) Henderson, D., Abraham, F.F., Barker, J.A.: The Ornstein–Zernike equation for a fluid in contact with a surface. Mol. Phys. 31, 1291 (1976) Snook, I.K., van Megen, W.: Structure of dense liquids at solid interfaces. J. Chem. Phys. 70, 3099 (1979) O’Shea, S.J., Welland, M.E., Pethica, J.B.: AFM of local compliance at the liquid-solid interface. Chem. Phys. Lett. 223, 336 (1994) Klein, J., Kumacheva, E.: Confinement-induced phase-transitions in simple liquids. Science 269, 816 (1995) Zhu, Y., Granick, S.: Reassessment of solidification in confined fluids between mica sheets. Langmuir 19, 8148 (2003) Becker, T., Mugele, F.: Nanofluidics: viscous dissipation in layered liquid films. Phys. Rev. Lett. 91, 166104 (2003) Bureau, L., Arvengas, A.: Drainage of a nanoconfined simple fluid: rate effects on squeeze-out dynamics. Phys. Rev. E 78, 061501 (2008) Bureau, L.: Nonlinear rheology of a nanoconfined simple fluid. Phys. Rev. Lett. 104, 218302 (2010) Maali, A., Cohen-Bouhacina, T., Couturier, G., Aimé, J.-P.: Oscillatory dissipation of a simple confined liquid. Phys. Rev. Lett. 96, 086105 (2006) O’Shea, S.J.: Comment on: oscillatory dissipation of a simple confined liquid. Phys. Rev. Lett. 97, 179601 (2006) Maali, A., Cohen-Bouhacina, T.: Maali and Cohen-Bouhacina reply—comment on: oscillatory dissipation of a simple confined liquid. Phys. Rev. Lett. 97, 179602 (2006) Patil, S., Matei, G., Oral, A., Hoffmann, P.M.: Solid or liquid? Solidification of a nanoconfined liquid under nonequilibrium conditions. Langmuir 22, 6485 (2006) de Beer, S., van den Ende, D., Mugele, F.: Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy. Nanotechnology 21, 325703 (2010) de Beer, S., van den Ende, D., Mugele, F.: Confinement-dependent damping in a layered liquid. J. Phys. Condens. Matter 23, 112206 (2011) Hofbauer, W., Ho, R.J., Hairulnizam, R., Gosvami, N.N., O’Shea, S.J.: Crystalline structure and squeeze-out dissipation of liquid solvation layers observed by small-amplitude dynamic AFM. Phys. Rev. B 80, 134104 (2009) Khan, S.H., Matei, G., Patil, S., Hoffmann, P.M.: Dynamic solidification in nanoconfined water films. Phys. Rev. Lett. 105, 106101 (2010) Ulcinas, A., Valdre, G., Snitka, V., Miles, M.J., Claesson, P.M., Antognozzi, M.: Shear response of nanoconfined water on muscovite mica: role of cations. Langmuir 27, 10351 (2011) Mugele, F., Persson, B.N.J., Zilberman, S., Nitzan, A., Salmeron, M.: Frictional properties of chain alcohols and the dynamics of layering transitions. Tribol. Lett. 12, 123 (2002) Kong, L.T., Denniston, C., Müser, M.H.: The crucial role of chemical detail for slip-boundary conditions: molecular dynamics simulations of linear oligomers between sliding aluminum surfaces. Model. Simul. Mater. Sci. Eng. 18, 034004 (2010) de Beer, S., Wennink, P., van der Weide-Grevelink, M., Mugele, F.: Do epitaxy and temperature affect oscillatory solvation forces? Langmuir 26, 13245 (2010) Thompson, P.A., Robbins, M.O.: Origin of stick-slip motion in boundary lubrication. Science 250, 792 (1990) Diestler, D.J., Schoen, M., Cushman, J.H.: On thermodynamic stability of confined thin films under shear. Science 262, 545 (1993) Müser, M.H.: Nature of mechanical instabilities and their effect on kinetic friction. Phys. Rev. Lett. 89, 224301 (2002) Gao, J., Luedtke, W.D., Landman, U.: Layering transitions and dynamics of confined liquid films. Phys. Rev. Lett. 79, 705 (1997) Mittal, J., Truskett, T.M., Errington, J.R., Hummer, G.: Layering and position-dependent diffusive dynamics of confined fluids. Phys. Rev. Lett. 100, 145901 (2008) Somers, S.A., McCormick, A.V., Davis, H.T.: Superselectivity and solvation forces of a two component fluid adsorbed in slit micropores. J. Chem. Phys. 99, 9890 (1993) He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284, 1650 (1999) Persson, B.N.J., Ballone, P.: Squeezing lubrication films: layering transition for curved solid surfaces with long-range elasticity. J. Chem. Phys. 112, 9524 (2000) Kaneko, T., Mima, T., Yasuoka, K.: Phase diagram of Lennard-Jones fluid confined in slit pores. Chem. Phys. Lett. 490, 165 (2010) Toxvaerd, S.: Molecular dynamics at constant temperature and pressure. Phys. Rev. E 47, 343 (1993) Frenkel, D., Smit, B.: Understanding molecular simulation. From algorithms to applications. Academic Press, San Diego (1996) Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242 (1961) Eral, H.B., Oh, J.M., van den Ende, D., Mugele, F., Duits, M.H.G.: Anisotropic and hindered diffusion of colloidal particles in a closed cylinder. Langmuir 26, 16722 (2010) Imperio, A., Padding, J.T., Briels, W.J.: Diffusion of spherical particles in microcavities. J. Chem. Phys. 134, 154904 (2011) Müser, M.H., Robbins, M.O.: Conditions for static friction between flat crystalline surfaces. Phys. Rev. B 61, 2335 (2000) de Beer, S., den Otter, W.K., van den Ende, D., Briels, W.J., Mugele, F.: EPL, submitted Chandler, D.: Introduction to modern statistical mechanics. Oxford University Press, Oxford (1987) Bocquet, L., Barrat, J.-L.: Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49, 3079 (1994) Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L.: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067 (2010) Delhommelle, J., Cummings, P.T.: Simulation of friction in nanoconfined fluids for an arbitrarily low shear rate. Phys. Rev. B 72, 172201 (2005) Müser, M.H.: Theory and simulation of friction and lubrication. Lect. Notes Phys. 704, 65 (2006) Tartaglino, U., Sivebaek, I.M., Persson, B.N.J., Tosatti, E.: Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity. J. Chem. Phys. 125, 014704 (2006) Hoffmann, P.M.: Private communications Ebeling, D., van den Ende, D., Mugele, F.: Electrostatic interaction forces in aqueous salt solutions of variable concentration and valency. Nanotechnology 22, 305706 (2011) Horn, R.G., Israelachvili, J.N.: Direct measurement of structural forces between two surfaces in a nonpolar liquid. J. Chem. Phys. 75, 1400 (1981) Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929 (2005) Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009) Li, T.-D., Riedo, E.: Nonlinear viscoelastic dynamics of nanoconfined wetting liquids. Phys. Rev. Lett. 100, 106102 (2008) Purnomo, E.H., van den Ende, D., Vanapalli, S.A., Mugele, F.: Glass transition and aging in dense suspensions of thermosensitive microgel particles. Phys. Rev. Lett. 101, 238301 (2008)