Calibration of δ<sup>18</sup>O of cultured benthic foraminiferal calcite as a function of temperature

Biogeosciences - Tập 7 Số 4 - Trang 1349-1356
Christine Barras1, Jean‐Claude Duplessy2,3, Emmanuelle Geslin1, Élisabeth Michel2,3, Frans Jorissen1
1LPGN - Laboratoire de Planétologie et Géodynamique de Nantes [UMR 6112] (2 Rue de la Houssinière - BP 92208 44322 NANTES CEDEX 3 - France)
2LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (Bât. 12, avenue de la Terrasse, F-91198 GIF-SUR-YVETTE CEDEX - France)
3PALEOCEAN - Paléocéanographie ( LSCE. CEA Paris-Saclay. Orme des merisiers. 91190 Saint-Aubin. - France)

Tóm tắt

Abstract. The geochemical composition of deep-sea benthic foraminiferal calcite is widely used to reconstruct sea floor paleoenvironments. The calibration of the applied proxy methods has until now been based on field observations in complex natural ecosystems where multiple factors are interfering. However, laboratory experiments with stable physico-chemical conditions appear to be the ideal way to evaluate the influence of a single parameter. In this paper, we present the oxygen isotopic composition of deep-sea benthic foraminiferal shells entirely calcified under controlled experimental conditions over a large temperature range (4 to 19 °C). The new laboratory protocols developed for this study allowed us to produce large quantities of shells in stable conditions, so that also the shell size effect could be investigated. It appears that when considering a narrow test size range, the curve describing the temperature dependency of δ18O in Bulimina marginata is parallel to the thermodynamically determined curve observed in inorganically precipitated calcite (−0.22‰ °C−1). This observation validates the use of δ18O of this benthic species in paleoceanographical studies. Over the studied size range (50 to 300 μm), the effect of test size was 0.0014‰ μm−1, confirming previous suggestions of a substantial test size effect on δ18O of benthic foraminifera. This study opens new perspectives for future proxy calibrations in laboratory set-ups with deep-sea benthic foraminifera (e.g. quantification of the influence of the carbonate chemistry).

Từ khóa


Tài liệu tham khảo

Barras, C., Geslin, E., Duplessy, J.-C. and Jorissen, F. J.: Reproduction and growth of the deep-sea benthic foraminifer Bulimina marginata under different laboratory conditions, J. Foramin. Res., 39, 155–165, 2009.

Bemis, B. E., Spero, H. J., Bijma, J. and Lea, D. W.: Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations, Paleoceanography, 13, 150–160, 1998.

Berger, W. H., Killingley, J. S., and Vincent, E.: Stable isotopes in deep-sea carbonates: box core ERDC-92 west equatorial Pacific, Oceanol. Acta, 1, 203–216, 1978.

Bernhard, J. M., Blanks, J. K., Hintz, C. J. and Chandler, G. T.: Use of the fluorescent calcite marker calcein to label foraminiferal tests, J. Foramin. Res., 34, 96–101, 2004.

Bouvier-Soumagnac, Y. and Duplessy, J.-C.: Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment: implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle, J. Foramin. Res., 15, 302–320, 1985.

Bouvier-Soumagnac, Y., Duplessy, J.-C. and Bé, A. W. H.: Isotopic composition of a laboratory cultured planktonic foraminifer O. universa, Implications for paleoclimatic reconstructions, Oceanol. Acta, 9, 519–522, 1986.

Bradshaw, J. S.: Laboratory studies on the rate of growth of the foraminifer, "Streblus beccarii (Linné) var. tepida (Cushman)", J. Paleontol., 31, 1138–1147, 1957.

Bradshaw, J. S.: Laboratory experiments on the ecology of foraminifera, Contributions from the Cushman Foundation for Foraminiferal Research, 12(Part 3), 87–106, 1961.

Chandler, G. T., Williams, D. F., Spero, H. J. and Xiaodong, G.: Sediment microhabitat effects on carbon stable isotopic signatures of microcosm-cultured benthic foraminifera, Limnol. Oceanogr., 41, 680–688, 1996.

Dunbar, R. B. and Wefer, G.: Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin, Mar. Geol., 59, 215–225, 1984.

Duplessy, J.-C., Lalou, C. and Vinot, A. C.: Differential Isotopic Fractionation in Benthic Foraminifera and Paleotemperatures Reassessed, Science, 168, 250–251, 1970.

Elderfield, H., Vautravers, M. and Cooper, M.: The relationship between size and Mg/Ca, Sr/Ca, d18O, and d13C of species of planktonik foraminifera, Geochem. Geophy. Geosy., 3(8), 1052, https://doi.org/10.1029/2001GC000194, 2002.

Epstein, S. R., Buchsbaum, R., Lowenstem, H. A. and Urey, H. C.: Revised carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 64, 1315–1326, 1953.

Erez, J. and Luz, B.: Experimental paleotemperature equation from planktonic forminifera, Geochim. Cosmochim. Ac., 47, 1025–1031, 1983.

Filipsson, H. L., Bernhard, J. M., Lincoln, S. A. and McCorkle, D. C.: A culture-based calibration of benthic foraminiferal paleotemperature proxies: δ18O and Mg/Ca results, Biogeosciences, 2010.

Grossman, E. L.: Stable isotopes in modern benthic foraminifera: a study of vital effect, J. Foramin. Res., 17, 48–61, 1987.

Hemleben, C. and Kitazato, H.: Deep-sea foraminifera under long time observation in the laboratory, Deep Sea Res. Pt. I, 42(6), 827–832, 1995.

Hintz, C. J., Chandler, G. T., Bernhard, J. M., McCorkle, D. C., Havach, S. M., Blanks, J. K., and Shaw, T. J.: A physicochemically constrained seawater culturing system for production of benthic foraminifera, Limnol. Oceanogr.-Meth., 2, 160–170, 2004.

Hut, G.: Consultants group meeting on stable isotope reference samples for geochemical and hydrological investigations, Vienna, 42 pp., 1987.

Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates Geochim. Cosmochim. Ac., 61, 3461–3475, 1997.

Lin, L. I.: A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255–268, 1989.

McConnaughey, T.: 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns, Geochim. Cosmochim. Ac., 53(1), 151–162, 1989a.

McConnaughey, T.: 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects, Geochim. Cosmochim. Ac., 53(1), 163–171, 1989b.

McCorkle, D. C., Bernhard, J. M., Hintz, C. J., Blanks, J. K., Chandler, G. T., and Shaw, T. J.: The carbon and oxygen stable isotopic composition of cultured benthic foraminifera, in: Biogeochemical controls on palaeoceanographic environmental proxies, edited by: Austin, W. E. N. and James, R. H., Geological Society, London, 135–154, 2008.

McCrea, J. M.: On the isotopic chemistry of carbonates and a paleotemperature scale, J. Chem. Phys., 18, 849–857, 1950.

O'Neil, J. R., Clayton, R. N. and Mayeda, T. K.: Oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys., 51, 5547–5558, 1969.

Rathmann, S. and Kuhnert, H.: Carbonate ion effect on Mg/Ca, Sr/Ca and stable isotopes on the benthic foraminifera Oridorsalis umbonatus off Namibia Marine Micropaleontology, 66, 120–133, 2008.

Reynaud-Vaganay, S., Gattuso, J.-P., Cuif, J.-P., Jaubert, J. and Juillet-Leclerc, A.: A novel culture technique for scleractinian corals: application to investigate canges in skeletal d18O as a function of temperature, Mar. Ecol.-Prog. Ser., 180, 121–130, 1999.

Schmiedl, G., Pfeilsticker, M., Hemleben, C. and Mackensen, A.: Environmental and biological effects on the stable isotope composition of recent deep-sea benthic foraminifera from the western Mediterranean Sea, Marine Micropaleontology, 2004.

Spero, H. J., Bijma, J., Lea, D. W. and Bemis, B. E.: Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497–500, 1997.

Spero, H. J. and Lea, D. W.: Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions, Marine Micropaleontology, 28, 231-246, 1996.

Stouff, V., Lesourd, M. and Debenay, J.-P.: Laboratory observations on asexual reproduction (schizogony) and ontogeny of Ammonia tepida with comments on the life cycle, J. Foramin. Res., 29, 75–84, 1999.

Turner, J. V.: Kinetic fractionation of carbon-13 during calcium carbonate precipitation, Geochim. Cosmochim. Ac., 46, 1183–1191, 1982.

Urey, H. C.: The thermodynamic properties of isotopic substances, J. Chem. Soc., 562–581, 1947.

Vincent, E., Killingley, J. S. and Berger, W. H.: Stable isotopes in benthic foraminifera from Ontong-Java Plateau, box cores ERDC 112 and 123, Palaeogeogaphy, Palaeoclimatology, Palaeoecology, 33, 221–230, 1981.

Wilson-Finelli, A., Chandler, G. T. and Spero, H. J.: Stable isotope behavior in paleoceanographically important benthic foraminifera: Results from microcosm culture experiments, J. Foramin. Res., 28, 312–320, 1998.

Zeebe, R. E.: An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes, Geochim. Cosmochim. Ac., 63, 2001–2007, 1999.