Calenduloside E alleviates cerebral ischemia/reperfusion injury by preserving mitochondrial function
Tóm tắt
Calenduloside E (CE) isolated from Aralia elata (Miq.) Seem. is a natural triterpenoid saponin that can reportedly ameliorate myocardial ischemia/reperfusion injury. However, its potential roles and mechanism in cerebral ischemia/reperfusion injury are barely understood. In this study, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) model in HT22 cells. We found that CE significantly attenuated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Moreover, CE treatment significantly ameliorated OGD/R-induced mitochondrial fission by inhibiting mitochondrial dynamin-related protein 1 (Drp1) recruitment and increasing Drp1 phosphorylation at Ser637. CE treatment significantly ameliorated OGD/R-induced mitochondrial dysfunction by increasing the mitochondrial membrane potential and reducing the mitochondrial ROS and cellular calcium accumulation. Moreover, CE treatment significantly inhibited the OGD/R-induced release of mitochondrial Cytochrome C and increase in Bax, Cleaved-caspase3 and Cleaved-caspase9 protein levels, whereas CE treatment significantly reversed the OGD/R-induced decrease in Bcl-2 and full length of caspase3 and caspase9 protein levels. In vivo, we found that CE treatment significantly ameliorated ischemic/hypoxic-induced brain infarct volume, neurological deficits, and neuronal apoptosis in mice after middle cerebral artery occlusion and reperfusion. CE treatment also significantly ameliorated the mitochondrial transmembrane potential, decreased Cytochrome C release, and reversed the increase in Bax, Cleaved-caspase3 and Cleaved-caspase9 protein levels and the decrease in Bcl-2 and full length of caspase3 and caspase9 protein levels induced by cerebral ischemia/reperfusion (I/R). All these results indicated that CE treatment exerted a neuroprotective effect by ameliorating mitochondrial dysfunction during cerebral I/R injury.
Tài liệu tham khảo
Andrabi SS, Ali M, Tabassum H, Parveen S, Parvez S (2019) Pramipexole prevents ischemic cell death
via mitochondrial pathways in ischemic stroke.Dis Model Mech12:dmm033860. https://doi.org/10.1242/dmm.033860
Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282:21583–21587. https://doi.org/10.1074/jbc.C700083200
Gąsecki D, Kwarciany M, Kowalczyk K, Narkiewicz K, Karaszewski B (2020) Blood Pressure Management in Acute Ischemic Stroke. Curr Hypertens Rep 23:3. https://doi.org/10.1007/s11906-020-01120-7
Herpich F, Rincon F (2020) Management of Acute Ischemic Stroke. Crit Care Med 48:1654–1663. https://doi.org/10.1097/CCM.0000000000004597
He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M (2020) Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 146:45–58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005
Javadov S, Kuznetsov A (2013) Mitochondrial permeability transition and cell death. the role of
cyclophilin d.Front Physiol4:76. https://doi.org/10.3389/fphys.2013.00076
Jokinen H, Melkas S, Ylikoski R, Pohjasvaara T, Kaste M, Erkinjuntti T, Hietanen M (2015) Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol 22:1288–1294. https://doi.org/10.1111/ene.12743
Juurlink BH, Hertz L (1993) Ischemia-induced death of astrocytes and neurons in primary culture: pitfalls in quantifying neuronal cell death. Brain Res Dev Brain Res 71:239–246. https://doi.org/10.1016/0165-3806(93)90175-a
Kim JH, Lee J (2014) Induced neural stem cells protect neuronal cells against apoptosis. Med Sci Monit 20:2759–2766. https://doi.org/10.12659/MSM.891343
Kuo PC, Scofield BA, Yu IC, Chang FL, Ganea D, Yen JH (2016) Interferon-β Modulates Inflammatory Response in Cerebral Ischemia. J Am Heart Assoc 5:e002610. https://doi.org/10.1161/JAHA.115.002610
Lai Y, Lin P, Chen M, Zhang Y, Chen J, Zheng M, Liu J, Du H, Chen R, Pan X, Liu N, Chen H(2020) Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function.Redox Biol34:101503. https://doi.org/10.1016/j.redox.2020.101503
Liao C, Xu D, Liu X, Fang Y, Yi J, Li X, Guo B (2018) Iridium (III) complex-loaded liposomes as a drug delivery system for lung cancer through mitochondrial dysfunction. Int J Nanomedicine 13:4417–4431. https://doi.org/10.2147/IJN.S170035
Li S, Sun X, Xu L, Sun R, Ma Z, Deng X, Liu B, Fu Q, Qu R, Ma S (2017) Baicalin attenuates in vivo and in vitro hyperglycemia-exacerbated ischemia/reperfusion injury by regulating mitochondrial function in a manner dependent on AMPK. Eur J Pharmacol 815:118–126. https://doi.org/10.1016/j.ejphar.2017.07.041
Liu F, Lu J, Manaenko A, Tang J, Hu Q (2018a) Mitochondria in Ischemic Stroke: New Insight and Implications. Aging Dis 9:924–937. https://doi.org/10.14336/AD.2017.1126
Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J, Fu Q, Liu Y, Li H, Lou J, Hou W, Mi W, Ma Y (2020) Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation 17:270. https://doi.org/10.1186/s12974-020-01946-7
Liu S, Feng X, Jin R, Li G (2018b) Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv 15:173–184. https://doi.org/10.1080/17425247.2018.1384464
Martorell-Riera A, Segarra-Mondejar M, Muñoz JP, Ginet V, Olloquequi J, Pérez-Clausell J,Palacín M
Reina M, Puyal J, Zorzano A, Soriano FX (2014) Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J 33:2388–2407. https://doi.org/10.15252/embj.201488327
Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802. https://doi.org/10.1242/jcs.114439
Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. https://doi.org/10.1038/nrm3412
Shakeri R, Kheirollahi A, Davoodi J (2017) Apaf-1: Regulation and function in cell death. Biochimie 135:111–125. https://doi.org/10.1016/j.biochi.2017.02.001
Shao Z, Dou S, Zhu J, Wang H, Xu D, Wang C, Cheng B, Bai B (2020) The Role of Mitophagy in Ischemic Stroke. Front Neurol 11:608610. https://doi.org/10.3389/fneur.2020.608610
Stinear CM, Lang CE, Zeiler S, Byblow WD (2020) Advances and challenges in stroke rehabilitation. Lancet Neurol 19:348–360. https://doi.org/10.1016/S1474-4422(19)30415-6
Tang T, Wang S, Cai T, Cheng Z, Qi S, Qi Z (2019) Calenduloside E inhibits lipopolysaccharide-induced inflammatory response by inhibiting activation of ROS-mediated JAK1-stat3 signaling pathway in RAW264.7 cells. Nan Fang Yi Ke Da Xue Xue Bao 39:904–910. https://doi.org/10.12122/j.issn.1673-4254.2019.08.05
Tian Y, Du YY, Shang H, Wang M, Sun ZH, Wang BQ, Deng D, Wang S, Xu XD, Sun GB, Sun XB (2017) Calenduloside E Analogues Protecting H9c2 Cardiomyocytes Against H2O2-Induced Apoptosis: Design, Synthesis and Biological Evaluation. Front Pharmacol 8:862. https://doi.org/10.3389/fphar.2017.00862
Tian Y, Wang S, Shang H, Wang WQ, Wang BQ, Zhang X, Xu XD, Sun GB, Sun XB (2019) The clickable activity-based probe of anti-apoptotic calenduloside E. Pharm Biol 57:133–139. https://doi.org/10.1080/13880209.2018.1557699
Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34:1573–1584. https://doi.org/10.1038/jcbfm.2014.130
Vosler PS, Graham SH, Wechsler LR, Chen J (2009) Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics. Stroke 40:3149–3155. https://doi.org/10.1161/STROKEAHA.108.543769
Wang S, Chen X, Cheng J, Cai T, Wu X, Cheng Z, Qi S, Qi Z (2021) Calunduloside E inhibits HepG2 cell proliferation and migration via p38/JNK-HMGB1 signalling axis. J Pharmacol Sci 147:18–26. https://doi.org/10.1016/j.jphs.2021.05.005
Wang M, Wang RY, Zhou JH, Xie XH, Sun GB, Sun XB (2020a) Calenduloside E Ameliorates Myocardial Ischemia-Reperfusion Injury through Regulation of AMPK and Mitochondrial OPA1. Oxid Med Cell Longev 2020:2415269. https://doi.org/10.1155/2020/2415269
Wang M, Xu X, Xu H, Wen F, Zhang X, Sun H, Yao F, Sun G, Sun X (2014) Effect of the total saponins of Aralia elata (Miq) Seem on cardiac contractile function and intracellular calcium cycling regulation. J Ethnopharmacol 155:240–247. https://doi.org/10.1016/j.jep.2014.05.024
Wang R, Wang M, Zhou J, Dai Z, Sun G, Sun X (2020b) Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury. J Adv Res 34:173–186. https://doi.org/10.1016/j.jare.2020.10.005
Wei N, Pu Y, Yang Z, Pan Y, Liu L (2019) Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion. Biomed Pharmacother 110:203–212. https://doi.org/10.1016/j.biopha.2018.11.060
Wu B, Luo H, Zhou X, Cheng CY, Lin L, Liu BL, Liu K, Li P, Yang H (2017) Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol. Biochim Biophys Acta Mol Basis Dis 1863:2307–2318. https://doi.org/10.1016/j.bbadis.2017.06.011
Xu Y, Wang Y, Wang G, Ye X, Zhang J, Cao G, Zhao Y, Gao Z, Zhang Y, Yu B, Kou J (2017) YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission. Oxid Med Cell Longev 2017:1832093. https://doi.org/10.1155/2017/1832093
Yu YQ, Liu LC, Wang FC, Liang Y, Cha DQ, Zhang JJ, Shen YJ, Wang HP, Fang S, Shen YX (2010) Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J Cereb Blood Flow Metab 30:79–91. https://doi.org/10.1038/jcbfm.2009.181
Zhang N, Wang S, Li Y, Che L, Zhao Q (2013) A selective inhibitor of Drp1, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett 535:104–109. https://doi.org/10.1016/j.neulet.2012.12.049
Zhang Z, Qin P, Deng Y, Ma Z, Guo H, Guo H, Hou Y, Wang S, Zou W, Sun Y, Ma Y, Hou W (2018) The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J Neuroinflammation 15:206. https://doi.org/10.1186/s12974-018-1246-x
Zhou X, Wang HY, Wu B, Cheng CY, Xiao W, Wang ZZ, Yang YY, Li P, Yang H (2017) Ginkgolide K attenuates neuronal injury after ischemic stroke by inhibiting mitochondrial fission and GSK-3β-dependent increases in mitochondrial membrane permeability. Oncotarget 8:44682–44693. https://doi.org/10.18632/oncotarget.17967
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q (2018) Advances in stroke pharmacology. Pharmacol Ther 191:23–42. https://doi.org/10.1016/j.pharmthera.2018.05.012