Calcium-dependent Clustering of Inositol 1,4,5-Trisphosphate Receptors

Molecular Biology of the Cell - Tập 9 Số 6 - Trang 1465-1478 - 1998
Bridget S. Wilson1, Janet R. Pfeiffer1, Alexander J. Smith1, Janet M. Oliver1, Jon Oberdorf2, Richard J.H. Wojcikiewicz2
1Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131; and
2Department of Pharmacology, College of Medicine, State University of New York Health Science Center at Syracuse, Syracuse, New York 13210

Tóm tắt

Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcεR1) leads to activation of phospholipase C γ isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+stores, and a sustained phase of Ca2+influx. These events are accompanied by a redistribution of type II InsP3receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3receptor clustering occurs within 5–10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 μM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4–2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36M3Rcells. Stimulation of these three cell types leads to a reduction in InsP3receptor levels only in AR4–2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3receptors may contribute to the previously observed changes in affinity for InsP3in the presence of elevated Ca2+and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+when a subsequent stimulus results in production of InsP3.

Từ khóa


Tài liệu tham khảo

10.1091/mbc.6.9.1145

10.1091/mbc.9.2.483

Beaven M.S., 1984, J. Biol. Chem., 259, 7129, 10.1016/S0021-9258(17)39847-2

Beecroft M.D., 1997, Biochem. J., 326, 215, 10.1042/bj3260215

Bokkala S., 1997, J. Biol. Chem., 272, 12454, 10.1074/jbc.272.19.12454

De Smedt H., 1994, J. Biol. Chem., 269, 21691, 10.1016/S0021-9258(17)31861-6

De Smedt H., 1997, Biochem. J., 322, 575, 10.1042/bj3220575

Fasolato C., 1993, J. Biol. Chem., 268, 20737, 10.1016/S0021-9258(19)36843-7

Ferris C.D., 1989, Nature, 342, 870, 10.1038/342087a0

Ferris D., 1992, Nature, 356, 350, 10.1038/356350a0

Fujimoto T., 1992, J. Cell Biol., 119, 1507, 10.1083/jcb.119.6.1507

Gerasimenko O.V., 1996, Cell, 84, 472, 10.1016/S0092-8674(00)81292-1

Golovina V.A., 1997, Science, 275, 1643, 10.1126/science.275.5306.1643

Hashimoto S., 1988, J. Cell Biol., 107, 2524

Hass I.G., 1994, Experientia, 50, 1012, 10.1007/BF01923455

Joseph S.K., 1996, Cell. Signal., 8, 1, 10.1016/0898-6568(95)02012-8

10.1091/mbc.6.8.945

Kindman L.A., 1993, Biochemistry, 32, 1270, 10.1021/bi00056a011

Khan A.A., 1992, Science, 257, 815, 10.1126/science.1323146

Koch G.L.E., 1988, J. Cell Sci., 91, 511, 10.1242/jcs.91.4.511

Kulka R.G., 1988, J. Biol. Chem., 263, 15726, 10.1016/S0021-9258(19)37648-3

Kuno M., 1987, Nature, 326, 301, 10.1038/326301a0

Lee M.G., 1997, J. Biol. Chem., 272, 15765, 10.1074/jbc.272.25.15765

Lee R.J., 1997, Biochem. Biophys. Res. Commun., 235, 812, 10.1006/bbrc.1997.6874

10.1091/mbc.6.7.825

Liu F.T., 1980, J. Immunol., 24, 2728, 10.4049/jimmunol.124.6.2728

Mak D-O., 1997, J. Gen. Physiol., 109, 571, 10.1085/jgp.109.5.571

Maranto A.R., 1994, J. Biol. Chem., 269, 1222, 10.1016/S0021-9258(17)42246-0

Mignery G.A., 1989, Nature, 342, 192, 10.1038/342192a0

Muallem S., 1989, J. Biol. Chem., 264, 205, 10.1016/S0021-9258(17)31244-9

Parys J.B., 1995, Cell Calcium, 17, 239, 10.1016/0143-4160(95)90070-5

Perez P.J., 1997, J. Biol. Chem., 272, 23961, 10.1074/jbc.272.38.23961

Pfeiffer J.R., 1985, J. Cell Biol., 101, 2145, 10.1083/jcb.101.6.2145

Pietri F., 1990, J. Biol. Chem., 265, 17478, 10.1016/S0021-9258(18)38189-4

Ross C.A., 1989, Nature, 339, 468, 10.1038/339468a0

Satoh T., 1990, J. Cell Biol., 111, 615, 10.1083/jcb.111.2.615

Sienaert I., 1997, J. Biol. Chem., 272, 25899, 10.1074/jbc.272.41.25899

Simeone D.M., 1995, Regul. Pept., 55, 197, 10.1016/0167-0115(94)00107-9

Simpson P.B., 1997, J. Biol. Chem., 272, 22654, 10.1074/jbc.272.36.22654

Stump R.F., 1987, J. Immunol., 139, 881, 10.4049/jimmunol.139.3.881

Subramanian K., 1997, Cell, 89, 963, 10.1016/S0092-8674(00)80281-0

Volpe P., 1988, Proc. Natl. Acad. Sci. USA, 85, 1091, 10.1073/pnas.85.4.1091

Watras J., 1994, Biochemistry, 33, 14359, 10.1021/bi00251a050

Wojcikiewicz R.J.H., 1995, J. Biol. Chem., 270, 11678, 10.1074/jbc.270.19.11678

Wojcikiewicz R.J.H., 1994, J. Biol. Chem., 269, 7963, 10.1016/S0021-9258(17)37145-4

Wojcikiewicz R.J.H., 1996, J. Biol. Chem., 271, 16652, 10.1074/jbc.271.28.16652

Worley P.F., 1987, J. Biol. Chem., 262, 12132, 10.1016/S0021-9258(18)45326-4

Yoneshima H., 1997, Biochem. J., 322, 591, 10.1042/bj3220591

Yule D.I., 1997, J. Biol. Chem., 272, 9093, 10.1074/jbc.272.14.9093