Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
ATPase vận chuyển canxi và đồng: sự tương đồng và khác biệt trong cơ chế truyền đạt và tín hiệu
Tóm tắt
ATPase vận chuyển canxi và ATPase vận chuyển đồng đều là các thành viên của gia đình P-ATPase và giữ lại cơ chế xúc tác tương tự cho việc sử dụng ATP, bao gồm việc chuyển phosphoryl trung gian đến một dư lượng aspartyl được bảo tồn, sự dịch chuyển theo hướng của cation bị ràng buộc, và sự phân hủy thủy phân cuối cùng của Pi. Cả hai ATPase đều trải qua những thay đổi hình dạng protein đồng thời với các sự kiện xúc tác. Tuy nhiên, hai ATPase này là các mẫu hình của những đặc điểm khác nhau liên quan đến cơ chế chuyển đổi và tín hiệu. ATPase canxi ở lại ổn định trên màng giới hạn các khoang tế bào, tiếp nhận Ca2+ tự do với ái lực cao ở một bên màng, và thải Ca2+ đã liên kết ở bên còn lại của màng để tạo ra một gradient Ca2+ tự do cao. Những đặc điểm này là một yêu cầu cơ bản cho các cơ chế tín hiệu Ca2+ tế bào. Mặt khác, ATPase đồng tiếp nhận đồng thông qua sự trao đổi với các protein cho, và trải qua quá trình vận chuyển nội bào để cung cấp đồng đến các protein nhận. Ngoài vị trí vận chuyển cation và aspartat được bảo tồn trải qua phosphoryl hóa xúc tác, ATPase đồng còn có các vị trí điều hòa liên kết đồng trên một đoạn mở rộng protein N- đầu độc nhất, và cũng có các dư lượng serine trải qua phosphoryl hóa hỗ trợ bởi kinase. Những đặc điểm bổ sung này tham gia vào cơ chế vận chuyển nội bào của ATPase đồng, điều này là cần thiết để cung cấp đồng cho màng plasma để thải ra ngoài, và cho mạng lưới trans-Golgi để kết hợp vào các metalloprotein. Glycosyl hóa cụ thể isoform góp phần ổn định ATP7A ATPase đồng trong màng plasma.
Từ khóa
#ATPase #canxi #đồng #cơ chế truyền đạt #tín hiệu #phosphoryl hóa #màng plasmaTài liệu tham khảo
Andersen JP, Vilsen B (1992) Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca2+ ATPase of sarcoplasmic reticulum. J Biol Chem 267:19383–19387
Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108
Banci L, Bertini I, Cantini F, Massagni C, Migliardi M (2009a) An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1. J Biol Chem 284:9354–9360
Banci L, Bertini I, Cantini F, Migliardi M, Natile G, Nushi F, Rosato A (2009b) Solution structures of the actuator domain of ATP7A and ATP7B, the Menkes and Wilson disease proteins. Biochemistry 48:7849–7855
Barnes N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S (2005) The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum. J Biol Chem 280:9640–9645
Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49
Braiterman L, Nyasae L, Leves F, Hubbard AL (2011) Critical roles for the C-Terminus of the Cu-ATPase, ATP7B, in protein stability, trans-Golgi network retention, copper sensing and retrograde trafficking. Am J Physiol Gastrointest Liver Physiol, Mar 31. [Epub ahead of print]
Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378
Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003–1034
Cavagna M, O’Donnell JM, Sumbilla C, Inesi G, Klein MG (2000) Exogenous Ca2+-ATPase isoform effects on Ca2+ transients of embryonic chicken and neonatal rat cardiac myocytes. J Physiol 528:53–63
Chiesi M, Inesi G (1981) Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles. Arch Biochem Biophys 208:586–592
Clapham DE (2007) Calcium signaling. Cell 131:1047–1058
Clarke DM, Loo TW, Inesi G, MacLennan DH (1989) Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+ ATPase. Nature 339:476–478
de Meis L, Vianna AL (1979) Energy interconversion by the Ca2+ dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 48:275–292
Dierick HA, Ambrosini L, Spencer J, Glover TW, Mercer JF (1995) Molecular structure of the Menkes disease gene (ATP7A). Genomics 28:462–469
Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S (2006) Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci USA 103:5302–5307
Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps–first come, first served? FEBS J 277:540–549
Gitlin JD (2003) Wilson disease. Gastroenterolog 125:1868–7187
González-Guerrero M, Argüello JM (2008) Mechanism of Cu+−transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci USA 105:5992–5997
Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol 289:G904–G916
Harada M (2002) Wilson disease. Med Electron Microsc 35:61–66
Hatori Y, Lewis D, Toyoshima C, Inesi G (2009) Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants. Biochemistry 48:4871–4880
Hawkins C, Xu, Narayanan N (1994) Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin-dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation. J Biol Chem 269:31198–31206
Hung YH, Layton MJ, Voskoboinik I, Mercer JF, Camakaris J (2007) Purification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A). Biochem J 401:569–579
Inesi G (1985) Mechanism of calcium transport. Annu Rev Physiol 47:573–601
Inesi G, Nakamoto RK (2008) Special issue on transport ATPases. Arch Biochem Biophys 476:1–2
Inesi G, Kurzmack M, Coan C, Lewis DE (1980) Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem 255:3025–3031
Inesi G, Sumbilla C, Kirtley ME (1990) Relationships of molecular structure and function in Ca2+ transport ATPase. Physiol Rev 70:749–760
La Fontaine S, Firth SD, Lockhart PJ, Brooks H, Parton RG, Camakaris J, Mercer JF (1998) Functional analysis and intracellular localization of the human menkes protein (MNK) stably expressed from a cDNA construct in Chinese hamster ovary cells (CHO-K1). Hum Mol Genet 7:1293–1300
Liljedahl M, Maeda Y, Colanzi A, Ayala I, Van Lint J, Malhotra V (2001) Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104:409–420
Liu Y, Pilankatta R, Hatori Y, Lewis D, Inesi G (2010) Comparative features of copper ATPases ATP7A and ATP7B heterologously expressed in COS-1 cells. Biochemistry 49:10006–10012
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046
MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577
MacLennan DH, Brandl CJ, Korczak B, Green NM (1985) Amino-acid sequence of a Ca2+ and Mg2+ dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700
Masuda H, de Meis L (1973) Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions. Biochemistry 12:4581–4585
Mercer JF, Barnes N, Stevenson J, Strausak D, Llanos RM (2003) Copper-induced trafficking of the cU-ATPases: a key mechanism for copper homeostasis. Biometals 16:175–184
Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148
Møller JV, Olesen C, Winther AM, Nissen P (2010) The sarcoplasmic Ca2+−ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43:501–566
Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430–442
Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084–6095
Petris MJ, Voskoboinik I, Cater M, Smith K, Kim BE, Llanos RM, Strausak D, Camakaris J, Mercer JF (2002) Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 277:46736–46742
Petrukhin K, Lutsenko S, Chernov I, Ross BM, Kaplan JH, Gilliam TC (1994) Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet 3:1647–1656
Pilankatta R, Lewis D, Adams CM, Inesi G (2009) High yield heterologous expression of wild-type and mutant Cu+−ATPase (ATP7B, Wilson disease protein) for functional characterization of catalytic activity and serine residues undergoing copper-dependent phosphorylation. J Biol Chem 284:21307–21316
Pilankatta R, Lewis D, Inesi G (2011) Involvement of protein kinase D in expression and trafficking of ATP7B (Copper ATPase). J Biol Chem 286:7389–7396
Prasad AM, Inesi G (2009) Effects of thapsigargin and phenylephrine on calcineurin and protein kinase C signaling functions in cardiac myocytes. Am J Physiol Cell Physiol 296:C992–C1002
Prasad AM, Inesi G (2010) Downregulation of Ca2+ signalling proteins in cardiac hypertrophy. Minerva Cardioangiol 58:193–204
Sagara Y, Inesi G (1991) Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 266:13503–13506
Sazinsky MH, Mandal AK, Argüello JM, Rosenzweig AC (2006a) Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+ ATP ase. J Biol Chem 281:11161–11166
Sazinsky MH, Agarwal S, Argüello JM, Rosenzweig AC (2006b) Structure of the actuator domain from the Archaeoglobus fulgidus Cu+ ATPase. Biochemistry 45:9949–9955
Schaefer M, Hopkins RG, Failla ML, Gitlin JD (1999) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson’s disease protein in the liver. Am J Physiol 276:G639–G646
Strock C, Cavagna M, Peiffer WE, Sumbilla C, Lewis D, Inesi G (1998) Direct demonstration of Ca2+ binding defects in sarco-endoplasmic reticulum Ca2+ ATPase mutants overexpressed in COS-1 cells transfected with adenovirus vectors. J Biol Chem 273:15104–15109
Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Guidelli R, Inesi G (2006) Pre-steady state electrogenic events of Ca2+/H+ exchange and transport by the Ca2+ ATPase. J Biol Chem 281:37720–37727
Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Pilankatta R, Lewis D, Inesi G (2010) ATP dependent charge movement in ATP7B Cu+−ATPase is demonstrated by pre-steady state electrical measurements. FEBS Lett 584:4619–4622
Ton VK, Rao R (2004) Functional expression of heterologous proteins in yeast: insights into Ca2+ signaling and Ca2+-transporting ATPases. Am J Physiol Cell Physiol 287:C580–C589
Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+−ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292
Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Structure determination of the calcium pump of sarcoplasmic reticulum. Nature 405:647–655
Tsivkovskii R, Eisses JF, Kaplan JH, Lutsenko S (2002) Functional properties of the copper-transporting ATPase ATP7B (the Wilson’s disease protein) expressed in insect cells. J Biol Chem 277:976–983
Tsivkovskii R, Purnat T, Lutsenko S (2004) Copper transporting ATPases: key regulators of intracellular copper concentration. In: Futai, Kaplan, Wada (eds) Handbook of ATPases. Weiley-VCH Verlag, Weinheim, pp 99–158
Tsuda T, Toyoshima C (2009) Nucleotide recognition by CopA, a Cu+−transporting P-type ATPase. EMBO J 28:1782–1791
Tümer Z, Vural B, Tønnesen T, Chelly J, Monaco AP, Horn N (1995) Characterization of the exon structure of the Menkes disease gene using vectorette PCR. Genomics 26:437–442
Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E (1994) Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci USA 91:8572–8576
Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, Parys JB, Raeymaekers L, Wuytack F (2004) The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta 1742:103–112
Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J (2009) Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 41:2403–2412
Voskoboinik I, Brooks H, Smith S, Shen P, Camakaris J (1998) ATP-dependent copper transport by the Menkes protein in membrane vesicles isolated from cultured Chinese hamster ovary cells. FEBS Lett 435:178–182
Voskoboinik I, Greenough M, La Fontaine S, Mercer JF, Camakaris J (2001a) Functional studies on the Wilson copper P-type ATPase and toxic milk mouse mutant. Biochem Biophys Res Commun 281:966–970
Voskoboinik I, Mar J, Strausak D, Camakaris J (2001b) The regulation of catalytic activity of the menkes copper-translocating P-type ATPase. Role of high affinity copper-binding sites. J Biol Chem 276:28620–28627
Voskoboinik I, Jasmine Mar J, Daniel Strausak D, Camakaris J (2001c) The regulation of catalytic activity of the Menkes copper-translocating P-type ATPase the regulation of catalytic activity of the Menkes copper-translocating P-type ATPase: Role of high affinity copper-binding sites. J Biol Chem 276:28620–28627
Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13, Erratum in: Nat enet 1993, 3:273
Xu C, Ma H, Inesi G, Al-Shawi MK, Toyoshima C (2004) Specific structural requirements for the inhibitory effect of thapsigargin on the Ca2+ ATPase (SERCA). J Biol Chem 279:17973–17979