Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum

New Phytologist - Tập 210 Số 4 - Trang 1244-1258 - 2016
Elisa Andresen1,2, Sophie Kappel3, Hans‐Joachim Stärk4, Ulrike Riegger3, Jakub Borovec5,6, Jürgen Mattusch4, Andreas Heinz7, Christian E.H. Schmelzer7, Šárka Matoušková8, Bryan C. Dickinson9, Hendrik Küpper1,2,10
1Department of Biology University of Konstanz Konstanz D‐78457 Germany
2Department of Plant Biophysics and Biochemistry Institute of Plant Molecular Biology Biology Centre of the CAS Branišovská 31/1160 České Budějovice CZ‐37005 Czech Republic
3Department of Biology, University of Konstanz, Konstanz D-78457, Germany
4Department of Analytical Chemistry UFZ – Helmholtz Centre for Environmental Research Permoserstr. 15 Leipzig D‐04318 Germany
5Department of Ecosystem Biology Faculty of Science University of South Bohemia Branišovská 1760 České Budějovice CZ‐37005 Czech Republic
6Department of Hydrochemistry and Ecosystem Modelling Institute of Hydrobiology Biology Centre of the CAS Na Sádkách 7 České Budějovice CZ‐37005 Czech Republic
7Institute of Pharmacy Martin‐Luther‐Universität Halle‐Wittenberg Wolfgang‐Langenbeck‐Str. 4 Halle (Saale) D‐06120 Germany
8Institute of Geology of the CAS Rozvojová 269 Praha 6 – Lysolaje CZ‐16500 Czech Republic
9Department of Chemistry, The University of Chicago, GCIS E 319A, 929 E. 57th St., Chicago, IL, 60637 USA
10Faculty of Biological Science University of South Bohemia Branišovská 31/1160 České Budějovice CZ‐37005 Czech Republic

Tóm tắt

Summary Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature‐like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv/Fm, light‐acclimated PSII activity ΦPSII, and total Chl). Trimers of the PSII light‐harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.

Từ khóa


Tài liệu tham khảo

Ahmed SI, 2011, Trace metals’ contamination of stream water and irrigated crop at Naraguta‐Jos, Nigeria, ATBU Journal of Environmental Technology, 4, 49

10.1016/j.plantsci.2003.12.032

Alloway BJ, 2008, Zinc in soils and crop nutrition

10.1007/978-94-007-5179-8_13

10.1039/c3mt00088e

10.1016/j.aquatox.2013.09.016

10.1104/pp.106.082040

10.1093/oxfordjournals.pcp.a078181

Bachor A, 2012, Schadstoffuntersuchungen in Oberflächengewässern Mecklenburg‐Vorpommerns im Zeitraum 2007–2011, Schadstoffe zur Bewertung des chemischen Zustands gemäß Oberflächengewässerverordnung (OGewV)

10.1104/pp.50.6.698

10.1016/j.biochi.2006.07.003

10.1007/BF00032920

10.1093/jexbot/52.358.1101

10.1016/j.chemosphere.2006.01.030

10.1021/cr4004665

10.1021/bi002257f

10.1105/tpc.112.100339

10.1039/c3mt00111c

10.1016/j.plaphy.2009.04.002

10.1016/j.jtemb.2005.02.010

10.1016/j.sajb.2015.01.010

10.1111/j.1469-8137.2008.02512.x

10.1016/j.bbabio.2011.04.012

10.1016/j.envexpbot.2013.02.008

10.3390/ijms12106894

Kowalewska G, 1987, Replacement of magnesium by copper (II) in the chlorophyll porphyrin ring of planktonic algae, Acta Physiologiae Plantarum, 9, 43

Kowalewska G, 1989, Identification of the copper porphyrin complex formed in cultures of blue‐green alga Anabeana variabilis, Acta Physiologiae Plantarum, 11, 39

Kowalewska G, 1992, Formation of the copper–chlorophyll complexes in cells of phytoplankton from the Baltic Sea, Polskie Archiwum Hydrobiologii, 39, 41

10.1201/9780849346071-5

10.1093/jxb/47.2.259

10.1023/A:1006132608181

10.1007/1-4020-4516-6_5

10.1111/j.1469-8137.2007.02139.x

10.1021/ac070236m

10.1046/j.1529-8817.2002.01148.x

10.1023/A:1012461407557

10.1006/abio.2000.4794

10.3389/fpls.2013.00374

10.1007/978-94-007-5179-8_1

10.1111/j.1365-2389.1997.tb00554.x

10.1016/S0378-4290(98)00137-3

10.1016/0003-9861(51)90082-3

10.1039/c3mt00317e

10.1007/s10534-010-9336-y

10.1007/698_5_018

10.1111/j.0022-3646.2003.02-193.x

10.1016/j.bbabio.2011.05.017

10.1038/344658a0

10.1016/j.chemosphere.2005.04.052

10.1016/j.chemosphere.2012.08.043

10.1111/j.1469-8137.2009.02768.x

10.1104/pp.108.131524

10.1111/j.1365-3040.2006.01531.x

10.1007/BF00019335

10.1093/jexbot/52.364.2115

10.1007/978-3-642-00390-5_11

10.1016/j.bbabio.2004.07.003

10.1007/s11738-011-0909-3

Taiz L, 2007, Plant physiology

10.1098/rstb.2002.1139

10.1039/b507888c

10.1016/S0021-9258(17)36825-4

10.1016/j.aquatox.2013.05.008

10.2307/3579270

10.1007/978-94-007-5179-8_16

10.1080/00103629409369047

Zweckverband Bodensee‐Wasserversorgung(BWV).2011.Jahresmittelwerte 2011 Qualitätsdaten des Trinkwassers aus dem Bodensee. [WWW document] URLhttp://www.zvbwv.de/fileadmin/user_upload/PDF/Jahresmittelwerte2011.pdf[accessed 1 March 2012].