CYTOCHROME C OXIDASE: Structure and Spectroscopy

Annual Reviews - Tập 27 Số 1 - Trang 329-356 - 1998
Hartmut Michel1, Julia Behr1, Axel Harrenga1, Aimo Kannt1
1Max-Planck-Institut für Biophysik, Frankfurt/Main Germany.

Tóm tắt

▪ Abstract  Cytochrome c oxidase, the terminal enzyme of the respiratory chains of mitochondria and aerobic bacteria, catalyzes electron transfer from cytochrome c to molecular oxygen, reducing the latter to water. Electron transfer is coupled to proton translocation across the membrane, resulting in a proton and charge gradient that is then employed by the F0F1-ATPase to synthesize ATP.

Over the last years, substantial progress has been made in our understanding of the structure and function of this enzyme. Spectroscopic techniques such as EPR, absorbance and resonance Raman spectroscopy, in combination with site-directed mutagenesis work, have been successfully applied to elucidate the nature of the cofactors and their ligands, to identify key residues involved in proton transfer, and to gain insight into the catalytic cycle and the structures of its intermediates. Recently, the crystal structures of a bacterial and a mitochondrial cytochrome c oxidase have been determined. In this review, we provide an overview of the crystal structures, summarize recent spectroscopic work, and combine structural and spectroscopic data in discussing mechanistic aspects of the enzyme. For the latter, we focus on the structure of the oxygen intermediates, proton-transfer pathways, and the much-debated issue of how electron transfer in the enzyme might be coupled to proton translocation.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.93.22.12292

10.1016/S0065-3233(08)60536-7

10.1073/pnas.78.1.234

Antalis TM, 1982, J. Biol. Chem., 257, 6194, 10.1016/S0021-9258(20)65125-0

10.1007/BF00762849

10.1038/356301a0

10.1016/0020-1693(96)04925-0

10.1006/bbrc.1996.0531

10.1021/bi00540a013

10.1021/bi00200a022

Blackmore RS, 1991, J. Biol. Chem., 266, 19245, 10.1016/S0021-9258(18)54989-9

10.1021/ja00311a029

10.1021/bi960260m

10.1021/bi9606509

10.1016/S0005-2728(96)00143-0

10.1016/0968-0004(94)90071-X

10.1002/j.1460-2075.1994.tb06541.x

Chance B, 1975, J. Biol. Chem., 250, 9226, 10.1016/S0021-9258(19)40634-0

10.1042/bj1850139

10.1021/ja00201a080

10.1021/bi00042a011

10.1021/bi00032a019

10.1021/cr950051s

10.1021/bi00013a035

10.1042/bj0860541

Green GN, 1988, J. Biol. Chem., 263, 13138, 10.1016/S0021-9258(18)37682-8

Greenwood C, 1967, J. Biol. Chem., 242, 1782, 10.1016/S0021-9258(18)96070-9

10.1021/bi00172a024

10.1021/bi00162a025

10.1002/j.1460-2075.1989.tb08529.x

Han S, 1989, J. Biol. Chem., 264, 6604, 10.1016/S0021-9258(18)83469-X

10.1073/pnas.87.7.2491

10.1038/348089a0

10.1073/pnas.87.21.8408

10.1002/j.1460-2075.1982.tb01313.x

10.1016/0014-5793(96)00342-0

10.1016/S0006-3495(91)82067-7

Hill BC, 1991, J. Biol. Chem., 266, 2219, 10.1016/S0021-9258(18)52231-6

Hill BC, 1994, J. Biol. Chem., 269, 2419, 10.1016/S0021-9258(17)41962-4

10.1042/bj2150659

10.1042/bj2180913

10.1042/bj2790355

10.1016/0014-5793(94)00919-8

10.1007/BF00762854

10.1021/bi9606511

10.1038/376660a0

10.1007/BF00743611

10.1016/0014-5793(81)80916-7

Kelly M, 1993, J. Biol. Chem., 268, 16781, 10.1016/S0021-9258(19)85484-4

10.1002/9780470166468.ch6

10.1016/0014-5793(92)81412-F

10.1073/pnas.94.17.9085

10.1107/S0021889891004399

10.1111/j.1432-1033.1985.tb08905.x

10.1021/bi00017a014

10.1073/pnas.92.16.7167

10.1021/bi00061a026

10.1016/S0014-5793(96)01174-X

Ludwig B, 1981, J. Biol. Chem., 256, 10092, 10.1016/S0021-9258(19)68747-8

10.1016/0301-4622(94)00117-3

10.1107/S0907444994006396

10.1016/0005-2728(94)90130-9

10.1021/bi00048a005

10.1021/bi961634e

10.1016/0014-5793(91)81161-Z

10.1021/ic00339a021

Ogura T, 1990, J. Biol. Chem., 265, 14721, 10.1016/S0021-9258(18)77169-X

10.1246/bcsj.64.2901

10.1021/ja00072a002

10.1021/ja951922i

10.1016/S0005-2728(89)80087-8

10.1021/bi00129a002

10.1111/j.1749-6632.1988.tb35327.x

10.1038/nsb1095-842

10.1073/pnas.94.20.10547

10.1073/pnas.73.7.2206

10.1073/pnas.90.8.3309

Proshlyakov DA, 1994, J. Biol. Chem., 269, 29385, 10.1016/S0021-9258(18)43890-2

10.1021/bi952096t

10.1021/bi9511705

10.1073/pnas.93.4.1545

10.1073/pnas.92.26.11949

10.1071/PP9950479

Rieder R, 1980, c. J. Biol. Chem., 255, 4732, 10.1016/S0021-9258(19)85557-6

10.1016/0005-2728(96)00040-0

10.1007/BF00762858

10.1017/S0033583500005588

Siletzky SA, 1996, Biochim. Biophys. Acta, EBEC Rep., 9, B27

10.1021/bi962422k

10.1021/bi961466q

10.1021/bi00091a048

10.1126/science.7652554

10.1126/science.272.5265.1136

10.1021/ja00198a075

10.1021/bi00484a001

10.1073/pnas.90.1.237

10.1021/bi00176a042

10.1021/bi00022a023

10.1021/bi961433a

10.1038/380268a0

10.1016/S0005-2728(96)00147-8

10.1073/pnas.93.22.12235

Vygodina TY, 1996, Biochim. Biophys. Acta, EBEC Rep., 9, B32

10.1042/bj3000469

10.1021/bi00237a014

10.1073/pnas.78.7.4051

10.1038/338776a0

10.1016/0005-2728(94)90093-0

Wikström M, 1992, J. Biol. Chem., 267, 10266, 10.1016/S0021-9258(19)50013-8

10.1073/pnas.92.26.11955

10.1016/0301-4622(94)00156-E

10.1074/jbc.272.9.5514

10.1016/0005-2728(95)00050-S

Witt SN, 1986, J. Biol. Chem., 261, 8104, 10.1016/S0021-9258(19)83882-6

Witt SN, 1987, J. Biol. Chem., 262, 1446, 10.1016/S0021-9258(19)75655-5

10.1007/BF00762859

10.1073/pnas.88.6.2588

10.1042/bj2170715

10.1021/bi00413a048

Yonetani T, 1961, J. Biol. Chem., 236, 1680, 10.1016/S0021-9258(19)63284-9

10.1111/j.1432-1033.1995.686_b.x