CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection
Tóm tắt
Stable simultaneous knock down of the HIV-1 coreceptors CCR5 and CXCR4 is a promising strategy to protect cells from both R5 macrophage tropic and X4 T cell tropic as well as dual tropic viral infections. The potency of shRNAs in targeted gene silencing qualifies them as powerful tools for long term HIV gene therapy. Our previous work with a bispecific lentiviral vector containing CXCR4 and CCR5 shRNAs showed efficacy in down regulating both coreceptors and conferring viral resistance to both X4 and R5-tropic strains of HIV-1 in cultured cell lines. To extend these results to a stem cell gene therapy setting, here we show transduction of primary CD34+ hematopoietic progenitor cells to derive normal end stage cells that are resistant to HIV-1 infection. The bispecific XHR lentiviral vector harboring CXCR4 and CCR5 shRNA expression cassettes was efficient in transducing CD34+ cells. The transduced cells gave rise to morphologically normal transgenic macrophages when cultured in cytokine media. There was a marked down regulation of both coreceptors in the stably transduced macrophages which showed resistance to both R5 and X4 HIV-1 strains upon in vitro challenge. Since off target effects by some shRNAs may have adverse effects on transgenic cells, the stably transduced macrophages were further analyzed to determine if they are phenotypically and functionally normal. FACS evaluation showed normal levels of the characteristic surface markers CD14, CD4, MHC class II, and B7.1. Phagocytic functions were also normal. The transgenic macrophages demonstrated normal abilities in up-regulating the costimulatory molecule B7.1 upon LPS stimulation. Furthermore, IL-1 and TNFα cytokine secretion in response to LPS stimulation was also normal. Thus, the transgenic macrophages appear to be phenotypically and functionally normal. These studies have demonstrated for the first time that a bispecific lentiviral vector could be used to stably deliver shRNAs targeted to both CCR5 and CXCR4 coreceptors into CD34+ hematopoietic progenitor cells and derive transgenic macrophages. Transgenic macrophages with down regulated coreceptors were resistant to both R5 and X4 tropic HIV-1 infections. The differentiated cells were also phenotypically and functionally normal indicating no adverse effects of shRNAs on lineage specific differentiation of stem cells. It is now possible to construct gene therapeutic lentiviral vectors incorporating multiple shRNAs targeted to cellular molecules that aid in HIV-1 infection. Use of these vectors in a stem cell setting shows great promise for sustained HIV/AIDS gene therapy.
Tài liệu tham khảo
Malim MH, Freimuth WW, Liu J, Boyle TJ, Lyerly HK, Cullen BR, Nabel GJ: Stable expression of transdominant rev protein in human T cells inhibits Human Immunodeficiency Virus replication. J Exp Med. 1992, 176: 1197-1201. 10.1084/jem.176.4.1197.
Bonyhadi ML, Moss K, Voytovich A, Auten J, Kalfoglou C, Plavec I, Forestell S, Su L, Bohnlein E, Kaneshima H: RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication. J Virol. 1997, 71: 4707-4716.
Ding SF, Lombardi R, Nazari R, Joshi S: A combination anti-HIV-1 gene therapy approach using a single transcription unit that expresses antisense, decoy, and sense RNAs, and transdominant negative mutant Gag and Env proteins. Front Biosci. 2002, 7: a15-28.
Michienzi A, Li S, Zaia JA, Rossi J: A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci USA. 2002, 99: 14047-14052. 10.1073/pnas.212229599.
Akkina R, Banerjea A, bai J, Anderson J, Li MJ, Rossi J: siRNAs, ribozymes, and RNA decoys in modeling stem cell-based gene therapy for HIV/AIDS. Anticancer Res. 2003, 23: 1997-2006.
Bahner I, Kearns K, Hao QL, Smogorzewska EM, Kohn DB: Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture. J Virol. 1996, 70: 4352-4360.
Lisziewicz J, Sun D, Smythie J, Lusso P, Lori F, Louie A, Markham P, Rossi J, Reitz M, Gallo RC: Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc Natl Acad Sci USA. 1993, 90: 8000-8004.
Bai J, Gorantla S, Banda N, Cagnon L, Rossi J, Akkina R: Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol Therapy. 2000, 1: 244-254. 10.1006/mthe.2000.0038.
Bai J, Rossi J, Akkina R: Multivalent anti-CCR5 ribozymes for stem cell-based HIV type 1 gene therapy. AIDS Res Hum Retroviruses. 2001, 17: 385-399. 10.1089/088922201750102427.
Bai J, Banda N, Lee NS, Rossi J, Akkina R: RNA-based anti-HIV-1 gene therapeutic constructs in SCID-hu mouse model. Mol Therapy. 2002, 6: 770-782. 10.1006/mthe.2002.0800.
Cagnon L, Rossi J: Down regulation of the CCR5 beta-chemokine receptor and inhibition of HIV-1 infection by stable VA1-ribozyme chimeric transcripts. Anti Nucl Acid Drug Dev. 2000, 10: 251-261. 10.1089/108729000421439.
Feng Y, Leavitt M, Tritz R, Duarte E, Kang D, Mamounas M, Gilles P, Wong-Staal F, Kennedy S, Merson J, Yu M, Barber JR: Inhibition of CCR5-dependent HIV-1 infection by hairpin ribozyme gene therapy against CC-chemokine receptor 5. Virol. 2000, 276: 271-278. 10.1006/viro.2000.0536.
Fire A, xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998, 391: 806-811. 10.1038/35888.
Hannon GJ: RNA Interference. Nature. 2002, 418: 244-251. 10.1038/418244a.
Sharp P: RNA interference-2001. Genes Dev. 2001, 15: 485-490. 10.1101/gad.880001.
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001, 411: 494-498. 10.1038/35078107.
Lee NS, Dohjima T, Bauer G, Li H, Li M, Ehsani A, Salvaterra P, Rossi J: Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. 2002, 20: 500-505.
Song E, Lee S, Dykxhoorn DM, Novina C, Zhang D, Crawford K, Cerny J, Sharp PA, Leiberman J, Manjunath N, Shankar P: Sustained small interfering RNA- mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol. 2003, 77: 7174-7181. 10.1128/JVI.77.13.7174-7181.2003.
Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee S, Collman RG, Lieberman J, Shankar P, Sharp PA: siRNA-directed inhibition of HIV-1 infection. Nat Med. 2002, 8: 681-686.
Jacque J, Triques K, Stevenson M: Modulation of HIV-1 replication by RNA interference. Nature. 2002, 418: 435-438. 10.1038/nature00896.
Martinez MA, Gutierrez A, Armand-Ugon M, Blanco J, Parera M, Gomez J, Clotet B, Este JA: Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS. 2002, 16: 2385-2390. 10.1097/00002030-200212060-00002.
Coburn GA, Cullen BR: Potent and specific inhibition of human immunodeficiency virus type-1 replication by RNA interference. J Virol. 2002, 76: 9225-9231. 10.1128/JVI.76.18.9225-9231.2002.
Anderson J, Banerjea A, Planelles V, Akkina R: Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA. AIDS Res and Hum Retroviruses. 2003, 19: 699-706. 10.1089/088922203322280928.
Anderson J, Banerjea A, Akkina R: Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides. 2003, 13: 303-312. 10.1089/154545703322616989.
Capodici J, Kariko K, Weissman D: Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol. 2002, 169: 5196-5201.
Haasnoot PCJ, Cupac D, Berkhout B: Inhibition of virus replication by RNA interference. J Biomed Sci. 2003, 10: 607-616. 10.1159/000073526.
Lee MM, Coburn G, McClure MO, Cullen BR: Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol. 2003, 77: 11964-11972. 10.1128/JVI.77.22.11964-11972.2003.
Li M, Bauer G, Michienzi A, Yee J, Lee NS, Kim J, Li S, Castanotto D, Zaia J, Rossi J: Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III- promoted anti-HIV RNAs. Mol Therapy. 2003, 8: 196-206. 10.1016/S1525-0016(03)00165-5.
Banerjea A, Li M, Bauer G, Remling L, Lee NS, Rossi J, Akkina R: Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in lymphocytes diferentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Therapy. 2003, 8: 62-71. 10.1016/S1525-0016(03)00140-0.
Ketteler R, Glaser S, Sandra O, Martens UM, Klingmuller U: Enhancedtrnsgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently trnsduced by optimized retroviral hybrid vectors. Gene Therapy. 2002, 9: 477-487. 10.1038/sj.gt.3301653.
An DS, Koyanagi Y, Zhao J, Akkina R, Bristol G, Yamamoto N, Zack JA, Chen ISY: High-efficiency transduction of huma lymphoid progenitor cells and expression in differentiated T cells. J Virol. 1997, 71: 1397-1404.
Mautino MR, Morgan RA: Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care and STDs. 2002, 16: 11-26. 10.1089/108729102753429361.
Butticaz C, Ciuffi A, Munoz M, Thomas J, Bridge A, Pebernard S, Iggo R, Meylan P, Telenti A: Protection from HIV-1 infection of primary CD4 T cells by CCR5 silencing is effective for the full spetrum of CCR5 expression. Antiviral Therapy. 2003, 8: 373-377.
Qin X, An DS, Chen ISY, Baltimore D: Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 2003, 100: 183-188. 10.1073/pnas.232688199.
Cordelier P, Morse B, Strayer DS: Targeting CCR5 with siRNAs: Using Recombinant SV40-Derived Vectors to Protect Macrophages and Microglia from R5-Tropic HIV. Oligonucletides. 2003, 13: 281-294. 10.1089/154545703322616961.
Zhou N, Fang J, Mukhtar M, Acheampong E, Pomerantz RJ: Inhibition of HIV-1 fusion with small interfering RNAstargeting the chemokine coreceptor CXCR4. Gene Therapy. 2004, 11: 1703-1712. 10.1038/sj.gt.3302339.
Anderson J, Akkina R: HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Therapy. 2005, 2: 1-12. 10.1186/1742-6405-2-1.
Boden D, Pusch O, Lee F, Tucker L, Ramratnam B: Human immunodeficiency virus type 1 escape from RNA interference. J Virol. 2003, 77: 11531-11535. 10.1128/JVI.77.21.11531-11535.2003.
Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, Berkhout B: Human Immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol. 2004, 78: 2601-2605. 10.1128/JVI.78.5.2601-2605.2004.
Bieniasz PD, Cullen BR: Chemokine receptors and Human Immunodeficiency Virus infection. Front in Biosci. 1998, 3: 44-58.
Berger EA, Murphy PM, Farber JM: Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999, 17: 657-700. 10.1146/annurev.immunol.17.1.657.
Liu R, Paxton W, Choe S, Ceradini D, Martin S, Horuk R, MacDonald M, Stuhlman H, Koup R, Landau N: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply exposed individuals to HIV-1 infection. Cell. 1996, 86: 267-377.
Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA: The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996, 2: 1240-1243. 10.1038/nm1196-1240.
Naif HM, Cunningham AL, Alali M, Li S, Nasr N, Buhler MM, Schols D, Clercq E, Stewart G: A human immunodeficiency virus type 1 isolate froman infected person homozygous for CCR5Δ32 exhibits dual tropism by infecting macrophages and MT2 cells via CXCR4. J Virol. 2002, 76: 3114-3124. 10.1128/JVI.76.7.3114-3124.2002.
Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA. 95: 9448-9453. 10.1073/pnas.95.16.9448.
Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS: Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA. 2004, 101: 1892-1897. 10.1073/pnas.0308698100.
Yam P, Li S, Wu J, Hu J, Zaia J, Yee J: Design of HIV-1 vectors for efficient gene delivery into human hematopoietic cells. Mol Therapy. 2002, 6: 770-782. 10.1006/mthe.2002.0800.
Ailles LE, Naldini L: HIV-1 Derived Lentiviral Vectors. Lentiviral Vectors. Edited by: Trono D. 2002, Berlin: Springer-Verlag, 31-48.
Kimpton J, Emerman M: Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated β-galactosidase gene. J Virol. 1992, 66: 2232-2239.
Vodicka MA, Goh WC, Wu LI, Rogel ME, Bartz SR, Schweickart VL, Raport CJ, Emerman M: Indicator cell lines for detection of primary strains ofhuman and simian immunodeficiency viruses. Virol. 1997, 233: 193-198. 10.1006/viro.1997.8606.
Jayakumar P, Berger I, Autschbach F, Weinstein M, Funke B, Verdin E, Goldsmith MA, Keppler OT: Tissue-Resident Macrophages Are Productively Infected Ex Vivo by Primary X4 Isolates of Human Immunodeficiency Virus Type 1. J Virol. 2005, 79: 5220-5226. 10.1128/JVI.79.8.5220-5226.2005.
Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O'Brien W, Raz E, Littman D, Wylie C, Lehmann R: The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development. 2002, 130: 4279-4286. 10.1242/dev.00640.