CRMP2 Phosphorylation Drives Glioblastoma Cell Proliferation

Aubin Moutal1, Lex Salas Villa1, Seul Ki Yeon2, Kyle T. Householder3,4, Ki Duk Park2, Rachael W. Sirianni4,3, Rajesh Khanna1
1Department of Pharmacology; College of Medicine, University of Arizona, Tucson, USA
2Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
3Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, USA
4School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi: 10.1016/j.cell.2013.09.034

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. doi: 10.1016/j.ccr.2009.12.020

Bianco J, Bastiancich C, Jankovski A, des Rieux A, Preat V, Danhier F (2017) On glioblastoma and the search for a cure: where do we stand? Cell Mol Life Sci. doi: 10.1007/s00018-017-2483-3

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. doi: 10.1126/science.1164382

Sintupisut N, Liu PL, Yeang CH (2013) An integrative characterization of recurrent molecular aberrations in glioblastoma genomes. Nucleic Acids Res 41(19):8803–8821. doi: 10.1093/nar/gkt656

Plaisier CL, O’Brien S, Bernard B, Reynolds S, Simon Z, Toledo CM, Ding Y, Reiss DJ et al (2016) Causal mechanistic regulatory network for glioblastoma deciphered using systems genetics Network analysis. Cell Syst 3(2):172–186. doi: 10.1016/j.cels.2016.06.006

Wood MD, Reis GF, Reuss DE, Phillips JJ (2016) Protein analysis of glioblastoma primary and posttreatment pairs suggests a mesenchymal shift at recurrence. J Neuropathol Exp Neurol 75(10):925–935. doi: 10.1093/jnen/nlw068

Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD et al (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22(1):21–35. doi: 10.1016/j.ccr.2012.05.037

Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014. doi: 10.1073/pnas.1219747110

Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63(4):851–859

McGillicuddy LT, Fromm JA, Hollstein PE, Kubek S, Beroukhim R, De Raedt T, Johnson BW, Williams SM et al (2009) Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. Cancer Cell 16(1):44–54. doi: 10.1016/j.ccr.2009.05.009

Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT et al (2015) Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 6:7391. doi: 10.1038/ncomms8391

Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376(6540):509–514. doi: 10.1038/376509a0

Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N et al (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591. doi: 10.1038/ncb825

Ip JP, Fu AK, Ip NY (2014) CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist. doi: 10.1177/1073858413514278

Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M et al (2008) Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem 283(14):9399–9413. doi: 10.1074/jbc.M708206200

Grant NJ, Coates PJ, Woods YL, Bray SE, Morrice NA, Hastie CJ, Lamont DJ, Carey FA et al (2015) Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis. BMC Cancer 15:885. doi: 10.1186/s12885-015-1691-1

Tan F, Thiele CJ, Li Z (2014) Collapsin response mediator proteins: potential diagnostic and prognostic biomarkers in cancers (review). Oncol Lett 7(5):1333–1340. doi: 10.3892/ol.2014.1909

Shimada K, Ishikawa T, Nakamura F, Shimizu D, Chishima T, Ichikawa Y, Sasaki T, Endo I et al (2014) Collapsin response mediator protein 2 is involved in regulating breast cancer progression. Breast Cancer 21(6):715–723. doi: 10.1007/s12282-013-0447-5

Oliemuller E, Pelaez R, Garasa S, Pajares MJ, Agorreta J, Pio R, Montuenga LM, Teijeira A et al (2013) Phosphorylated tubulin adaptor protein CRMP-2 as prognostic marker and candidate therapeutic target for NSCLC. Int J Cancer 132(9):1986–1995. doi: 10.1002/ijc.27881

Mukherjee J, DeSouza LV, Micallef J, Karim Z, Croul S, Siu KW, Guha A (2009) Loss of collapsin response mediator Protein1, as detected by iTRAQ analysis, promotes invasion of human gliomas expressing mutant EGFRvIII. Cancer Res 69(22):8545–8554. doi: 10.1158/0008-5472.CAN-09-1778

Moutal A, Honnorat J, Massoma P, Desormeaux P, Bertrand C, Malleval C, Watrin C, Chounlamountri N et al (2015) CRMP5 controls glioblastoma cell proliferation and survival through notch-dependent signaling. Cancer Res 75(17):3519–3528. doi: 10.1158/0008-5472.CAN-14-0631

Wilson SM, Xiong W, Wang Y, Ping X, Head JD, Brittain JM, Gagare PD, Ramachandran PV et al (2012) Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization. Neuroscience 210:451–466. doi: 10.1016/j.neuroscience.2012.02.038

Moutal A, Eyde N, Telemi E, Park KD, Xie JY, Dodick DW, Porreca F, Khanna R (2016) Efficacy of (S)-lacosamide in preclinical models of cephalic pain. Pain Rep 1(1). doi: 10.1097/PR9.0000000000000565

Moutal A, Chew LA, Yang X, Wang Y, Yeon SK, Telemi E, Meroueh S, Park KD et al (2016) (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology. Pain 157(7):1448–1463. doi: 10.1097/j.pain.0000000000000555

Moutal A, Francois-Moutal L, Perez-Miller S, Cottier K, Chew LA, Yeon SK, Dai J, Park KD et al (2016) (S)-lacosamide binding to collapsin response mediator protein 2 (CRMP2) regulates CaV2.2 activity by subverting its phosphorylation by Cdk5. Mol Neurobiol 53(3):1959–1976. doi: 10.1007/s12035-015-9141-2

Bocchini V, Casalone R, Collini P, Rebel G, Lo Curto F (1991) Changes in glial fibrillary acidic protein and karyotype during culturing of two cell lines established from human glioblastoma multiforme. Cell Tissue Res 265(1):73–81

Clark AJ, Safaee M, Oh T, Ivan ME, Parimi V, Hashizume R, Ozawa T, James CD et al (2014) Stable luciferase expression does not alter immunologic or in vivo growth properties of GL261 murine glioma cells. J Transl Med 12:345. doi: 10.1186/s12967-014-0345-4

Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R (2009) An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 284(45):31375–31390. doi: 10.1074/jbc.M109.009951

Dustrude ET, Moutal A, Yang X, Wang Y, Khanna M, Khanna R (2016) Hierarchical CRMP2 posttranslational modifications control NaV1.7 function. Proc Natl Acad Sci U S A 113(52):E8443–E8452. doi: 10.1073/pnas.1610531113

Choi D, Stables JP, Kohn H (1996) Synthesis and anticonvulsant activities of N-benzyl-2-acetamidopropionamide derivatives. J Med Chem 39(9):1907–1916

Francois-Moutal L, Wang Y, Moutal A, Cottier KE, Melemedjian OK, Yang X, Wang Y, Ju W et al (2015) A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors. Pain 156(7):1247–1264. doi: 10.1097/j.pain.0000000000000147

Dustrude ET, Wilson SM, Ju W, Xiao Y, Khanna R (2013) CRMP2 protein SUMOylation modulates NaV1.7 channel trafficking. J Biol Chem 288(34):24316–24331. doi: 10.1074/jbc.M113.474924

Cook RL, Householder KT, Chung EP, Prakapenka AV, DiPerna DM, Sirianni RW (2015) A critical evaluation of drug delivery from ligand modified nanoparticles: Confounding small molecule distribution and efficacy in the central nervous system. J Control Release 220(Pt A):89–97. doi: 10.1016/j.jconrel.2015.10.013

Abdelwahab MG, Sankar T, Preul MC, Scheck AC (2011) Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas. J Vis Exp 57:e3403. doi: 10.3791/3403

Householder KT, DiPerna DM, Chung EP, Wohlleb GM, Dhruv HD, Berens ME, Sirianni RW (2015) Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 479(2):374–380. doi: 10.1016/j.ijpharm.2015.01.002

Cole AR, Knebel A, Morrice NA, Robertson LA, Irving AJ, Connolly CN, Sutherland C (2004) GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 279(48):50176–50180. doi: 10.1074/jbc.C400412200

Koo TS, Kim SJ, Ha DJ, Baek M, Moon H (2011) Pharmacokinetics, brain distribution, and plasma protein binding of the antiepileptic drug lacosamide in rats. Arch Pharm Res 34(12):2059–2064. doi: 10.1007/s12272-011-1208-7

Elizabeth W. Newcomb DZ (2009) The murine GL261 glioma experimental model to assess novel brain tumor treatments. In: Erwin G. Van Meir P (ed) Models, Markers, Prognostic Factors, Targets, and Therapeutic Approaches. Humana Press. 227-241. doi: 10.1007/978-1-60327-553-8_12

Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, Lee E, Corrin P et al (2015) Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in glioblastoma stem-like cells. Cell Rep 13(11):2425–2439. doi: 10.1016/j.celrep.2015.11.021

Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, Hernandez F, Eickholt BJ et al (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem 281(24):16591–16598. doi: 10.1074/jbc.M513344200

Cole AR, Soutar MP, Rembutsu M, van Aalten L, Hastie CJ, McLauchlan H, Peggie M, Balastik M et al (2008) Relative resistance of Cdk5-phosphorylated CRMP2 to dephosphorylation. J Biol Chem 283(26):18227–18237. doi: 10.1074/jbc.M801645200

Balastik M, Zhou XZ, Alberich-Jorda M, Weissova R, Ziak J, Pazyra-Murphy MF, Cosker KE, Machonova O et al (2015) Prolyl isomerase Pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons. Cell Rep 13(4):812–828. doi: 10.1016/j.celrep.2015.09.026

Kamiya Y, Saeki K, Takiguchi M, Funakoshi K (2013) CDK5, CRMP2 and NR2B in spinal dorsal horn and dorsal root ganglion have different role in pain signaling between neuropathic pain model and inflammatory pain model. Eur J Anaesthesiol 30:214–214

Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P Jr, Hemmings BA, Merlo A, Lino MM (2009) GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS One 4(10):e7443. doi: 10.1371/journal.pone.0007443

Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, Nakada M, Minamoto T (2016) Glycogen synthase kinase-3beta is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci 107(10):1363–1372. doi: 10.1111/cas.13028

Pyko IV, Nakada M, Sabit H, Teng L, Furuyama N, Hayashi Y, Kawakami K, Minamoto T et al (2013) Glycogen synthase kinase 3beta inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis 34(10):2206–2217. doi: 10.1093/carcin/bgt182

Schiel JA, Park K, Morphew MK, Reid E, Hoenger A, Prekeris R (2011) Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J Cell Sci 124(Pt 9):1411–1424. doi: 10.1242/jcs.081448

Fremont S, Romet-Lemonne G, Houdusse A, Echard A (2017) Emerging roles of MICAL family proteins—from actin oxidation to membrane trafficking during cytokinesis. J Cell Sci. doi: 10.1242/jcs.202028

Brittain JM, Wang Y, Eruvwetere O, Khanna R (2012) Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2. FEBS Lett 586(21):3813–3818. doi: 10.1016/j.febslet.2012.09.022

Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10(2):165–179. doi: 10.1111/j.1365-2443.2005.00827.x

Schmidt EF, Shim SO, Strittmatter SM (2008) Release of MICAL autoinhibition by semaphorin-plexin signaling promotes interaction with collapsin response mediator protein. J Neurosci 28(9):2287–2297. doi: 10.1523/JNEUROSCI.5646-07.2008

Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG (2009) Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene 28(40):3537–3550. doi: 10.1038/onc.2009.204

Santolini E, Puri C, Salcini AE, Gagliani MC, Pelicci PG, Tacchetti C, Di Fiore PP (2000) Numb is an endocytic protein. J Cell Biol 151(6):1345–1352

See WL, Tan IL, Mukherjee J, Nicolaides T, Pieper RO (2012) Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res 72(13):3350–3359. doi: 10.1158/0008-5472.CAN-12-0334

Han S, Meng L, Jiang Y, Cheng W, Tie X, Xia J, Wu A (2017) Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br J Cancer. doi: 10.1038/bjc.2017.89

Adamo A, Fiore D, De Martino F, Roscigno G, Affinito A, Donnarumma E, Puoti I, Ricci-Vitiani L et al (2017) RYK promotes the stemness of glioblastoma cells via the WNT/ beta-catenin pathway. Oncotarget. doi: 10.18632/oncotarget.14564

Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, Champoux PE, Low WC et al (2008) Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev 17(1):173–184. doi: 10.1089/scd.2007.0133

Moutal A, Chew LA, Yang X, Wang Y, Yeon SK, Telemi E, Meroueh S, Park KD et al (2016) (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology. Pain. doi: 10.1097/j.pain.0000000000000555