CRISPR/Cas9-Mediated Gene Correction in Newborn Rabbits with Hereditary Tyrosinemia Type I

Molecular Therapy - Tập 29 - Trang 1001-1015 - 2021
Nan Li1,2, Shixue Gou1,2, Jiaowei Wang1,2, Quanjun Zhang1,3,4, Xingyun Huang1,2, Jingke Xie1,2, Li Li1, Qin Jin1,2, Zhen Ouyang1,3,4, Fangbing Chen1,2, Weikai Ge1,2, Hui Shi1,2, Yanhui Liang1,2, Zhenpeng Zhuang1,2, Xiaozhu Zhao1,2, Meng Lian1,5, Yinghua Ye1,3,4, Longquan Quan1,3,4, Han Wu1,3,4, Liangxue Lai1,3,4
1CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
4Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
5Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

Tài liệu tham khảo

Lindstedt, 1992, Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase, Lancet, 340, 813, 10.1016/0140-6736(92)92685-9 St-Louis, 1997, Mutations in the fumarylacetoacetate hydrolase gene causing hereditary tyrosinemia type I: overview, Hum. Mutat., 9, 291, 10.1002/(SICI)1098-1004(1997)9:4<291::AID-HUMU1>3.0.CO;2-9 Russo, 1990, Visceral pathology of hereditary tyrosinemia type I, Am. J. Hum. Genet., 47, 317 Mayorandan, 2014, Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice, Orphanet J. Rare Dis., 9, 107, 10.1186/s13023-014-0107-7 Adam, 2012, Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR), J. Hepatol., 57, 675, 10.1016/j.jhep.2012.04.015 Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Amoasii, 2018, Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy, Science, 362, 86, 10.1126/science.aau1549 Yang, 2016, A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice, Nat. Biotechnol., 34, 334, 10.1038/nbt.3469 Beyret, 2019, Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome, Nat. Med., 25, 419, 10.1038/s41591-019-0343-4 Santiago-Fernández, 2019, Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome, Nat. Med., 25, 423, 10.1038/s41591-018-0338-6 Paulk, 2010, Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo, Hepatology, 51, 1200, 10.1002/hep.23481 Yin, 2014, Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype, Nat. Biotechnol., 32, 551, 10.1038/nbt.2884 Yin, 2016, Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo, Nat. Biotechnol., 34, 328, 10.1038/nbt.3471 Song, 2020, Adenine base editing in an adult mouse model of tyrosinaemia, Nat. Biomed. Eng., 4, 125, 10.1038/s41551-019-0357-8 Shao, 2018, Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats, J. Biol. Chem., 293, 6883, 10.1074/jbc.RA117.000347 Jacobs, 2006, Kidneys of mice with hereditary tyrosinemia type I are extremely sensitive to cytotoxicity, Pediatr. Res., 59, 365, 10.1203/01.pdr.0000198810.57642.b4 Bosze, 2006, Application of rabbits in biomedical research: A review, World Rabbit Sci., 14, 1 Fan, 2003, Transgenic rabbits as therapeutic protein bioreactors and human disease models, Pharmacol. Ther., 99, 261, 10.1016/S0163-7258(03)00069-X Fan, 2015, Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine, Pharmacol. Ther., 146, 104, 10.1016/j.pharmthera.2014.09.009 Li, 2017, Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1, J. Biol. Chem., 292, 4755, 10.1074/jbc.M116.764787 Hickey, 2011, Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer, Hepatology, 54, 1351, 10.1002/hep.24490 Hickey, 2014, Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease, Stem Cell Res. (Amst.), 13, 144, 10.1016/j.scr.2014.05.003 Hickey, 2016, Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1, Sci. Transl. Med., 8, 349ra99, 10.1126/scitranslmed.aaf3838 Nicolas, 2019, Ectopic hepatocyte transplantation cures the pig model of tyrosinemia, bioRxiv Wang, 2019, Adeno-associated virus vector as a platform for gene therapy delivery, Nat. Rev. Drug Discov., 18, 358, 10.1038/s41573-019-0012-9 Sands, 2011, AAV-mediated liver-directed gene therapy, Methods Mol. Biol., 807, 141, 10.1007/978-1-61779-370-7_6 Nakai, 2005, Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice, J. Virol., 79, 214, 10.1128/JVI.79.1.214-224.2005 Zhang, 2016, Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I, Sci. Rep., 6, 31460, 10.1038/srep31460 Anguela, 2015, In Vivo Genome Editing in Neonatal Mouse Liver Preferentially Utilizes Homology Directed Repair, Blood, 126, 4422, 10.1182/blood.V126.23.4422.4422 Bae, 2014, Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases, Bioinformatics, 30, 1473, 10.1093/bioinformatics/btu048 Waddington, 2004, Fetal and neonatal gene therapy: benefits and pitfalls, Gene Ther., 11, S92, 10.1038/sj.gt.3302375 Landrum, 2016, ClinVar: public archive of interpretations of clinically relevant variants, Nucleic Acids Res., 44, D862, 10.1093/nar/gkv1222