COOPERATIVE ORGANIZATION OF BACTERIAL COLONIES: From Genotype to Morphotype

Annual Review of Microbiology - Tập 52 Số 1 - Trang 779-806 - 1998
Eshel Ben‐Jacob1, Inon Cohen1, David L. Gutnick2
1School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
2Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Tóm tắt

▪ Abstract  In nature, bacteria must often cope with difficult environmental conditions. To do so they have developed sophisticated cooperative behavior and intricate communication pathways. Utilizing these elements, motile microbial colonies frequently develop complex patterns in response to adverse growth conditions on hard surfaces under conditions of energy limitation. We employ the term morphotype to refer to specific properties of colonial development. The morphologies we discuss include a tip-splitting (T) morphotype, chiral (C) morphotype, and vortex (V) morphotype. A generic modeling approach was developed by combining a detailed study of the cellular behavior and dynamics during colonial development and invoking concepts derived from the study of pattern formation in nonliving systems. Analysis of patterning behavior of the models suggests bacterial processes whereby communication leads to self-organization by using cooperative cellular interactions. New features emerging from the model include various modes of cell-cell signaling, such as long-range chemorepulsion, short-range chemoattraction, and, in the case of the V morphotype, rotational chemotaxis. In this regard, pattern formation in microorganisms can be viewed as the result of the exchange of information between the micro-level (the individual cells) and the macro-level (the colony).

Từ khóa


Tài liệu tham khảo

10.1126/science.166.3913.1588

10.1063/1.881264

Beck G. 1995. Isolation and characterization ofSalmonella typhinuriumgenes involved in pattern formation. MSc thesis. Weizmann Inst. of Science, Rehovoth, Israel

Beck BJ, 1998, J. Bacteriol., 180, 885, 10.1128/JB.180.4.885-891.1998

10.1080/00107519308222085

10.1080/001075197182405

Ben-Jacob E, Cohen I. 1997. Cooperative formation of bacterial patterns. InBacteria As Multicellular Organisms, ed. JA Shapiro, M Dwarkin, pp. 394–416. New York: Oxford Univ. Press

10.1038/343523a0

10.1103/PhysRevA.38.1370

10.1016/0378-4371(92)90002-8

Ben-Jacob E, Schochet O, Tenenbaum A. 1994. Bakterien schließen sich zu bizarren formationen zusammen. InMuster des Ledendigen: Faszination inher Entstehung und Simulation, ed. A Deutsch, pp. 109–26. Cologne: Vieweg Verlag

10.1038/368046a0

10.1142/S0218348X9400003X

10.1016/0378-4371(94)90165-1

10.1038/373566a0

10.1103/PhysRevLett.75.2899

10.1142/S0218348X95000758

Ben-Jacob E, Schochet O, Tenenbaum A, Avidan O. 1995. Evolution of complexity during growth of bacterial colonies. InSpatio-Temporal Patterns in Nonequilibrium Complex Systems, ed. PE Cladis, P Palffy-Muhoray, pp. 619–34. Reading, MA: Addison-Wesley

10.1007/978-3-540-49733-2_14

10.1103/PhysRevE.53.1835

10.1016/S0378-4371(96)00457-8

Berg HC, 1993, Random Walks in Biology.

10.1016/S0006-3495(77)85544-6

10.1073/pnas.72.8.3235

10.1111/j.1365-2958.1992.tb00833.x

10.1146/annurev.mi.49.100195.002421

10.1128/jb.177.7.1683-1691.1995

10.1074/jbc.271.2.1226

Bruno WJ, 1992, CNLS Newsl., 82, 1

10.1038/349630a0

10.1038/376049a0

10.1016/S0378-4371(96)00247-6

10.1103/PhysRevE.54.1791

10.1126/science.2672337

Deleted in proof

Deleted in proof

10.1111/j.1365-2958.1990.tb00584.x

10.1111/j.1365-2958.1996.tb02531.x

Ford WW, 1916, J. Bacteriol., 1, 518

10.1143/JPSJ.58.3875

10.1128/jb.176.2.269-275.1994

10.1146/annurev.micro.50.1.727

10.1016/0163-7258(95)00027-5

10.1111/j.1365-2958.1994.tb00433.x

10.1038/scientificamerican0190-108

10.1007/BF00270003

10.1007/BF00270004

10.1016/0092-8674(93)90268-U

10.1080/00018738800101379

10.1146/annurev.mi.46.100192.001001

10.1143/JPSJ.66.1544

10.1016/0012-1606(86)90369-6

Lackiie JM, 1986, Biology of the Chemotactic Response.

10.1126/science.243.4895.1150

10.1111/j.1365-2958.1995.mmi_17020333.x

10.1038/scientificamerican0297-68

10.1111/j.1365-2958.1994.tb01315.x

10.1016/0378-4371(90)90402-E

Matsushita M, Wakita J-I, Matsuyama T. 1995. Growth and morphological changes of bacteria colonies. InSpatio-Temporal Patterns in Nonequilibrium Complex Systems, ed. PE Cladis, P Palffy-Muhoray, pp. 609–18. Reading, MA: Addison-Wesley

10.1016/S0378-4371(97)00511-6

10.3109/10408419309113526

10.1128/jb.174.6.1769-1776.1992

10.1142/S0218348X93000320

10.1073/pnas.75.5.2478

Mendelson NH, 1990, Sci. Prog., 74, 425

Mendelson NH, 1982, J. Bacteriol., 151, 455, 10.1128/jb.151.1.455-457.1982

10.1128/jb.178.7.1980-1989.1996

10.1128/jb.171.2.1055-1062.1989

10.1145/37402.37406

10.1111/j.1432-1033.1988.tb14356.x

10.1021/bi00339a034

Shapiro JA, 1988, Sci. Am., 258, 62

10.1002/bies.950130105

Shimkets LJ, Dworkin M. 1997. Myxobacterial multicellularity. InBacteria As Multicellular Organisms, ed. JA Shapiro, M Dwarkin, pp. 220–44. New York: Oxford Univ. Press

Smith RN, 1938, J. Bacteriol., 35, 59, 10.1128/jb.35.4.425-428.1938

Stevens FS, 1974, Pattern in Nature.

10.1038/344395a0

10.1016/0959-4388(94)90046-9

10.1103/PhysRevLett.75.4326

10.1103/PhysRevLett.75.1859

10.1098/rstb.1952.0012

Van-Dyk TK, 1998, J. Bacteriol., 180, 785, 10.1128/JB.180.4.785-792.1998

10.1103/PhysRevLett.75.1226

Wolf G, 1968, Encyclopaedia Cinematographica.

10.1128/jb.171.9.4900-4905.1989

10.1016/S0006-3495(95)80400-5