CONTROLS ON NITROGEN CYCLING IN TERRESTRIAL ECOSYSTEMS: A SYNTHETIC ANALYSIS OF LITERATURE DATA

Ecological Monographs - Tập 75 Số 2 - Trang 139-157 - 2005
Mary S. Booth1, John M. Stark2, Edward B. Rastetter3
1Earth Institute, Columbia University, B-15 Hogan Hall, MC 3277, 2110 Broadway, New York, New York 10027 USA
2Department of Biology, and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305 USA
3The Ecosystems Center, Woods Hole Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543 USA

Tóm tắt

Isotope pool dilution studies are increasingly reported in the soils and ecology literature as a means of measuring gross rates of nitrogen (N) mineralization, nitrification, and inorganic N assimilation in soils. We assembled data on soil characteristics and gross rates from 100 studies conducted in forest, shrubland, grassland, and agricultural systems to answer the following questions: What factors appear to be the major drivers for production and consumption of inorganic N as measured by isotope dilution studies? Do rates or the relationships between drivers and rates differ among ecosystem types? Across a wide range of ecosystems, gross N mineralization is positively correlated with microbial biomass and soil C and N concentrations, while soil C:N ratio exerts a negative effect on N mineralization only after adjusting for differences in soil C. Nitrification is a log‐linear function of N mineralization, increasing rapidly at low mineralization rates but changing only slightly at high mineralization rates. In contrast, NH4+ assimilation by soil microbes increases nearly linearly over the full range of mineralization rates. As a result, nitrification is proportionately more important as a fate for NH4+ at low mineralization rates than at high mineralization rates. Gross nitrification rates show no relationship to soil pH, with some of the fastest nitrification rates occurring below pH 5 in soils with high N mineralization rates. Differences in soil organic matter (SOM) composition and concentration among ecosystem types influence the production and fate of mineralized N. Soil organic matter from grasslands appears to be inherently more productive of ammonium than SOM from wooded sites, and SOM from deciduous forests is more so than SOM in coniferous forests, but differences appear to result primarily from differing C:N ratios of organic matter. Because of the central importance of SOM characteristics and concentrations in regulating rates, soil organic matter depletion in agricultural systems appears to be an important determinant of gross process rates and the proportion of NH4+ that is nitrified. Addition of 15N appears to stimulate NH4+ consumption more than NO3 consumption processes; however, the magnitude of the stimulation may provide useful information regarding the factors limiting microbial N transformations.

Từ khóa


Tài liệu tham khảo

10.1016/0169-5347(92)90048-G

Allison S., 2004, Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition, Biotropica, 36, 285

10.1007/BF00334413

10.1016/S0038-0717(97)00168-5

10.1016/S0038-0717(00)00192-9

10.1016/0038-0717(89)90117-X

10.1016/0038-0717(94)00141-M

10.1016/S0038-0717(00)00089-4

10.1016/S0038-0717(02)00248-1

10.1016/S0038-0717(99)00183-2

10.1016/S0378-1127(99)00294-7

10.1007/s004420050359

10.1007/BF00455349

10.1080/11956860.1994.11682229

10.1016/S0038-0717(00)00039-0

10.1023/A:1004896116130

10.2136/sssaj2002.8340

10.1016/S0038-0717(02)00233-X

Chen J., 2000, Soil Biology and Biochemistry, 47

M. Clarholm 1985

10.1890/0012-9658(2000)081[2314:LTIOAO]2.0.CO;2

10.1016/S0038-0717(02)00025-1

10.1890/1051-0761(2003)013[0287:SNCIHN]2.0.CO;2

10.1111/j.1365-2389.1991.tb00413.x

10.2307/1939508

10.1016/S0038-0717(00)00247-9

10.1016/S0269-7491(98)80068-7

10.1016/0038-0717(91)90149-E

10.1023/A:1010693614196

10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2

10.1579/0044-7447-31.2.64

10.1046/j.1469-8137.1998.00182.x

10.1016/S0269-7491(98)80060-2

10.1038/22094

10.1890/0012-9615(2003)073[0107:NSOTRF]2.0.CO;2

10.1016/S0038-0717(97)00004-7

10.2307/1939413

10.1016/S1161-0301(97)00045-2

10.1007/s003740050028

10.1007/s003740050005

Hatch D. J., 2002, Rapid Communications in Mass Spectrometry, 2172

R. J. Haynes 1996

10.1046/j.1440-1703.2003.00532.x

10.1007/s004420050069

10.1046/j.1365-2486.1999.00275.x

10.1023/A:1005747123463

Jackson R. B., 2001, Ecosystem carbon loss with woody plant invasion of grasslands, Nature, 418, 623, 10.1038/nature00910

10.1046/j.1365-2486.1999.00232.x

10.2136/sssaj1954.03615995001800010009x

10.1016/S0038-0717(98)00022-4

10.1007/s10021-002-0153-1

10.1097/00010694-199701000-00004

10.1890/1051-0761(2003)013[0154:EGACOS]2.0.CO;2

10.1016/S0038-0717(98)00068-6

10.1007/PL00008869

10.1128/AEM.69.6.3129-3136.2003

Müller C., 2004, Soil Biology and Biochemistry, 619

D. V. Murphy N. B. Dise K. W. T. Goulding J. MacDonald C. Peake P. Redfern E. Stockdale 2001

D. D. Myrold 1998

10.1038/nature01136

Nishio T., 2001, Simultaneous determination of transformation rates of nitrate in soil, Japan Agricultural Research Quarterly, 35, 11, 10.6090/jarq.35.11

10.1080/00380768.1994.10413304

Norton J. M., 1996, Soil Biology and Biochemistry, 351

T. Persson A. Rudebeck J. H. Jussy M. Colin-Belgrand A. Priemé E. Dambrine P. S. Karlsson R. M. Sjöberg 2000

10.1016/0038-0717(93)90055-G

10.1007/s003740050581

10.1016/0038-0717(89)90135-1

10.1016/S0038-0717(03)00212-8

10.2307/1940650

10.1016/S0016-7061(01)00080-5

Ross D. J., 2001, Australian Journal of Soil Research, 1027

P. Saetre J. M. Stark 2005

10.1890/03-8002

10.1128/AEM.48.4.802-806.1984

10.1016/S0038-0717(03)00015-4

10.1023/A:1019642007929

Scott N. A., 1998, Carbon and nitrogen transformations in New Zealand plantation forest soils from sites with different N status, Canadian Journal of Forest Research, 28, 967, 10.1139/x98-067

10.1046/j.1365-2486.2001.00390.x

10.2136/sssaj2004.1867

10.1016/S0038-0717(00)00050-X

10.1007/BF00411289

Silver W. L., 2001, Ecology, 2410

J. S. Smith E. A. Paul 1990

P. Sollins C. A. Glassman E. A. Paul C. Swanston K. Lajtha J. W. Heil E. T. Elliot 1999

Sparling G. P., 1995, Australian Journal of Soil Research, 961

SPSS. 1996

J. M. Stark 1991

Stark J. M., 1996, Biogeochemistry, 433

Stark J. M., 1995, Applied and Environmental Microbiology, 218

Stark J. M., 1997, Nature, 61

10.1890/0012-9658(2002)083[2278:RONOEF]2.0.CO;2

10.1051/agro:2002060

10.1073/pnas.94.16.8284

10.1016/S0098-8472(98)00038-0

Van's t Riet J., 1968, Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes, Journal of Bacteriology, 96, 1455, 10.1128/jb.96.5.1455-1464.1968

10.2136/sssaj2001.652368x

10.1029/1998GB900005

10.1016/0038-0717(92)90020-X

10.1016/S0038-0717(00)00040-7

10.2136/sssaj2001.652340x

10.1007/s003740050434

10.1016/S0038-0717(97)00214-9

10.1007/BF00010791

10.2307/1940888

10.1007/s003740050542