COMESCAL: A microcomputer program for testing axioms and finding scale values for conjoint measurement data
Tài liệu tham khảo
Holt, J. O, &Wallsten, T. S. (1975). A users manual for CONJOINT: A computer program for evaluating certain conjoint measurement axioms.Catalogue of Selected Documents in Psychology,5, 317.
Krantz, D.H., Luce, R. D., Suppes, P., &Tversky, A. (1971).Foundations of measurement, (Vol. 1). New York: Academic Press
Lehner, P. E., &Noma, E. (1980). A new solution to the problem of finding all numerical solutions to ordered metric structures.Psychometrika,45, 135–137.
Luce, R. D., &Tukey, J. (1964). Simultaneous conjoint measurement: A new type of fundamental measurementJournal of Mathematical Psychology,1, 1–27.
McClelland, G. (1977). A note on Arbuckle and Latimer, “The number of two-way tables satisfying certain additivity axioms.”Journal of Mathematical Psychology,15, 292–295.
McClelland, G. H., &Coombs, C. H. (1975). ORDMET: A general algorithm for constructing all numerical solutions to ordered metric structures.Psychometrika,40, 269–290.
Person, H. B. (1977). SCJM: A stochastic conjoint-measurement diagnosis program.Journal of Marketing Research,14, 98–99.
Roberts, F. S. (1979).Measurement theory with applications to decision making, utility, and the social sciences. Reading, MA: Addison-Wesley.
Scott, D. (1964). Measurement models and linear inequalities.Journal of Mathematical Psychology,1, 233–247.
Sherman, B. F. (1977) An algonthrn for finite conjoint additivity.Journal of Mathematical Psychology,16, 204–218.
Ullrich, J. R., Cummins, D. E., &Walkenbach, J. (1978) PCJM2: A program for the axiomatic conjoint measurement analysis of polynomial composition rules.Behavior Research Methods & Instrumentation,10, 89–90.