COLOR SUPERCONDUCTIVITY AT MODERATE BARYON DENSITY
Tóm tắt
This article focuses on the two-flavor color superconducting phase at moderate baryon density. In order to simultaneously investigate the chiral phase transition and the color superconducting phase transition, the Nambu–Gorkov formalism is extended to treat the quark-antiquark and diquark condensates on an equal footing. The competition between the chiral condensate and the diquark condensate is analyzed. The cold dense charge neutral two-flavor quark system is investigated in detail. Under the local charge neutrality condition, the ground state of two-flavor quark matter is sensitive to the coupling strength in the diquark channel. When the diquark coupling strength is around the value obtained from the Fierz transformation or from fitting the vacuum bayron mass, the ground state of charge neutral two-flavor quark matter is in a thermal stable gapless 2SC (g2SC) phase. The unusual properties at zero as well as nonzero temperatures and the chromomagnetic properties of the g2SC phase are reviewed. Under the global charge neutrality condition, assuming the surface tension is negligible, the mixed phase composed of the regular 2SC phase and normal quark matter is more favorable than the g2SC phase. A hybrid nonstrange neutron star is constructed.
Từ khóa
Tài liệu tham khảo
Lee T. D., Phys. Rev., 9, 2291
Hong D. K., Acta Phys. Polon., 32, 1253
Son D. T., Phys. Rev., 59, 094019
Schafer T., Phys. Rev., 60, 114033
Pisarski R. D., Phys. Rev., 61, 074017
Pisarski R. D., Phys. Rev., 61, 051501
Hong D. K., Phys. Rev., 61, 056001
Manuel C., Phys. Rev., 62, 114008
Carter G. W., Phys. Rev., 60, 016004
Schwarz T. M., Phys. Rev., 60, 055205
Nebauer R., Phys. Rev., 65, 045204
Huang M., Phys. Rev., 65, 076012
Rischke D. H., Phys. Rev., 62, 054017
Son D. T., Phys. Rev., 61, 074012
Schafer T., Phys. Rev., 62, 094007
Schmitt A., Phys. Rev., 66, 114010
Larkin A. I., Zh. Eksp. Teor. Fiz., 47, 1136
Alford M. G., Phys. Rev., 63, 074016
Bowers J. A., Phys. Rev., 64, 014024
Leibovich A. K., Phys. Rev., 64, 094005
Kundu J., Phys. Rev., 65, 094022
Bowers J. A., Phys. Rev., 66, 065002
Giannakis I., Phys. Rev., 66, 031501
Kaplan D. B., Phys. Rev., 65, 054042
Schafer T., Phys. Rev., 65, 074006
Pisarski R. D., Phys. Rev., 60, 094013
Huang M., Chin. Phys. Lett., 19, 644
Vanderheyden B., Phys. Rev., 62, 094010
Vogl U., Z. Phys., 337, 191
Kapusta J., 1989, Finite-Temperature Field Theory
Blaschke D., Phys. Rev., 70, 014006
Fugleberg T. D., Phys. Rev., 67, 034013
Alford M., JHEP, 0206, 031
Steiner A. W., Phys. Rev., 66, 094007
Huang M., Phys. Rev., 67, 065015
Mishra A., Phys. Rev., 69, 014014
Gerhold A., Phys. Rev., 68, 011502
Schrieffer J. R., 1964, Theory of Superconductivity
Liao J. F., Phys. Rev., 68, 114016
Muther H., Phys. Rev., 67, 085024
Shovkovy I., Phys. Rev., 67, 103004
Grigorian H., Phys. Rev., 69, 065802
Glendenning N. K., Phys. Rev., 46, 1274
Weber F., 1999, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics
Alford M. G., Phys. Rev., 64, 074017
Papazoglou P., Phys. Rev., 57, 2576
Papazoglou P., Phys. Rev., 59, 411
Hanauske M., Astrophys. J., 537, 50320
Huang M., Commun. Theor. Phys., 38, 181