CD73+ extracellular vesicles inhibit angiogenesis through adenosine A2B receptor signalling

Journal of extracellular vesicles - Tập 9 Số 1 - 2020
Roberta Angioni1,2,2, Cristina Liboni1,3, Stéphanie Herkenne4, Ricardo Sánchez‐Rodríguez1,3, Giulia Borile3, Elisabetta Marcuzzi1,3, Bianca Calì1,3, Maurizio Muraca2,2, Antonella Viola1,3
1Department of Biomedical Sciences, University of Padua, Padua, Italy
2Department of Women's and Children's Health, University of Padua, Padua, Italy
3Fondazione Città della Speranza Istituto di Ricerca Pediatrica, Padua, Italy;
4Department of Biology, University of Padua, Padua, Italy

Tóm tắt

ABSTRACT

Pathological angiogenesis is a hallmark of several conditions including eye diseases, inflammatory diseases, and cancer. Stromal cells play a crucial role in regulating angiogenesis through the release of soluble factors or direct contact with endothelial cells. Here, we analysed the properties of the extracellular vesicles (EVs) released by bone marrow mesenchymal stromal cells (MSCs) and explored the possibility of using them to therapeutically target angiogenesis. We demonstrated that in response to pro‐inflammatory cytokines, MSCs produce EVs that are enriched in TIMP‐1, CD39 and CD73 and inhibit angiogenesis targeting both extracellular matrix remodelling and endothelial cell migration. We identified a novel anti‐angiogenic mechanism based on adenosine production, triggering of A2B adenosine receptors, and induction of NOX2‐dependent oxidative stress within endothelial cells. Finally, in pilot experiments, we exploited the anti‐angiogenic EVs to inhibit tumour progression in vivo. Our results identify novel pathways involved in the crosstalk between endothelial and stromal cell and suggest new therapeutic strategies to target pathological angiogenesis.

Từ khóa


Tài liệu tham khảo

10.1038/nm0603-653

10.1007/s10456-017-9569-2

10.1038/nrd3455

10.1146/annurev-vision-082114-035439

Cabral T Mello LGM Lima LH et al. Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous.2017;3:31.

Sagar SM, 2006, Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer‐Part 1, Curr Oncol Tor Ont, 13, 14, 10.3747/co.v13i1.77

10.4161/cc.7.13.6240

10.1091/mbc.E11-05-0393

10.1016/j.matbio.2015.03.002

10.1016/j.jtv.2009.11.004

Iyer VR Eisen MB Ross DT et al. The transcriptional program in the response of human fibroblasts to serum. Science.1999;283(5398):83–87.

10.1016/j.lfs.2018.11.033

10.1016/j.devcel.2011.07.001

10.1093/cvr/cvt215

10.1152/ajpcell.00185.2014

10.1182/blood-2011-01-332338

10.1182/blood.V56.2.289.289

10.1038/nature09262

10.1016/j.devcel.2014.03.014

Watt SM Gullo F van der Garde M et al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull.2013;108(1):25–53.

10.1007/s10456-012-9272-2

10.1038/bmt.2011.196

10.1161/01.RES.0000063425.51108.8D

10.1038/nm1391

Ransohoff JD Wu JC. Imaging stem cell therapy for the treatment of peripheral arterial disease. Curr Vasc Pharmacol.2012;10(3):361–373. Available from:http://www.eurekaselect.com/96299/article

Tao H Han Z Han ZC et al. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int.2016;2016:1314709. Available from:https://www.hindawi.com/journals/sci/2016/1314709/

10.1016/j.vph.2014.06.004

10.1161/CIRCRESAHA.117.309681

10.1124/pr.112.005983

10.1083/jcb.201211138

Teng X Chen L Chen W et al. Mesenchymal Stem Cell‐Derived Exosomes Improve the Microenvironment of Infarcted Myocardium Contributing to Angiogenesis and Anti‐Inflammation. Cell Physiol Biochem.2015;37(6):2415–2424.

10.5966/sctm.2015-0078

10.1002/stem.2298

Sahoo S, 2011, Exosomes from human CD34+ stem cells mediate their pro‐angiogenic paracrine activity, Circ Res, 109, 724–728, 10.1161/CIRCRESAHA.111.253286

10.1242/jcs.170373

Ferguson SW Wang J Lee CJ et al. The microRNA regulatory landscape of MSC‐derived exosomes: a systems view. Sci Rep.2018;8(1):1419.

10.5966/sctm.2016-0026

10.1182/blood-2008-09-176198

10.1089/scd.2012.0165

10.1016/j.jprot.2017.07.012

10.1038/leu.2012.202

10.1038/leu.2016.33

Théry C Amigorena S Raposo G et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol.2006; Chapter 3.https://www.ncbi.nlm.nih.gov/pubmed/18228490

10.3181/00379727-77-18779

Herkenne S Paques C Nivelles O et al. The interaction of uPAR with VEGFR2 promotes VEGF‐induced angiogenesis [published correction appears in Sci Signal. 2015 Dec 8;8(406):er9]. Sci Signal.2015;8(403):ra117.

Filippi A, 2018, Multimodal label‐free ex vivo imaging using a dual‐wavelength microscope with axial chromatic aberration compensation, J Biomed. Opt, 23, 1

Kaundal U Bagai U Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med.2018;16(1):31.

10.1016/j.bbagen.2016.07.028

10.1073/pnas.1521230113

10.1038/nprot.2007.30

10.1242/jcs.041913

10.1038/jid.2009.26

10.18632/oncotarget.20331

Guo S Lok J Liu Y et al. Assays to examine endothelial cell migration tube formation and gene expression profiles. Methods Mol Biol.2014;1135:393–402.

10.1167/iovs.10-5176

10.1186/s12885-018-4179-y

10.1038/sj.emboj.7601281

10.1016/j.tcb.2011.11.002

10.1016/S0014-5793(00)02305-X

10.1152/ajpcell.00322.2010

10.1016/j.cardiores.2006.05.003

10.1182/blood-2013-09-512749

Rezabakhsh A Ahmadi M Khaksar M et al. Rapamycin inhibits oxidative/nitrosative stress and enhances angiogenesis in high glucose‐treated human umbilical vein endothelial cells: Role of autophagy. Biomed Pharmacother.2017;93:885–894.

10.1161/01.CIR.0000027107.54614.1A

10.1016/j.tox.2018.09.002

10.1155/2016/3565127

Fan LM Geng L Cahill‐Smith S et al. Nox2 contributes to age‐related oxidative damage to neurons and the cerebral vasculature. J Clin Invest.2019;129(8):3374–3386.

10.1111/bph.12336

10.1161/CIRCRESAHA.116.309326

10.1074/jbc.M110.184606

Zhou Z Rajamani U Labazi H et al. Involvement of NADPH oxidase in A2A adenosine receptor‐mediated increase in coronary flow in isolated mouse hearts. Purinergic Signal.2015;11(2):263–273.

10.1038/cddis.2014.70

Ghiringhelli F Bruchard M Chalmin F et al. Production of adenosine by ectonucleotidases: A key factor in tumor immunoescape. J Biomed Biotechnol.2012;2012:473712. Available from:https://www.hindawi.com/journals/bmri/2012/473712/

Smyth LA Ratnasothy K Tsang JY et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol.2013;43(9):2430–2440.

10.1172/JCI81136

10.1016/j.imlet.2005.04.005

10.1016/j.cell.2011.08.039

10.2337/db06-1749

MacDonald IJ Liu SC Su CM et al. Implications of Angiogenesis Involvement in Arthritis. Int J Mol Sci.2018;19(7):2012.

10.1038/cr.2016.85

10.1097/MOH.0000000000000041

10.1159/000362276

Xing F Saidou J Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 2010;15:166–179.

Lyons TR O'Brien J Borges VF et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX‐2. Nat Med. 2011;17(9):1109–1115.

10.1172/JCI38988

10.1016/j.jtcvs.2009.12.037

Yong KW Choi JR Mohammadi M et al. Mesenchymal Stem Cell Therapy for Ischemic Tissues. Stem Cells Int. 2018;2018:8179075. Available from:https://www.hindawi.com/journals/sci/2018/8179075/

10.1089/ten.teb.2011.0488

10.3727/096368913X675728

10.1161/CIRCRESAHA.117.309417

10.1038/mt.2015.44

10.18632/oncotarget.16778

10.1371/journal.pone.0115316

Gonzalez‐King H García NA Ontoria‐Oviedo I et al. Hypoxia Inducible Factor‐1α Potentiates Jagged 1‐mediated angiogenesis by mesenchymal stem cell‐derived exosomes. Stem Cells.2017;35(7):1747–1759.

Liu J Hao H Xia L et al. Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS One.2015;10(5):e0126715.

10.1089/scd.2017.0296

Zou X, 2016, Human mesenchymal stromal cell‐derived extracellular vesicles alleviate renal ischemic reperfusion injury and enhance angiogenesis in rats, Am J Transl Res, 8, 4289

Zou X, 2018, Comprehensive miRNA analysis of human umbilical cord‐derived mesenchymal stromal cells and extracellular vesicles, Kidney Blood Press Res, 43, 152, 10.1159/000487369

Ren W Hou J Yang C et al. Extracellular vesicles secreted by hypoxia pre‐challenged mesenchymal stem cells promote non‐small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR‐21‐5p delivery. J Exp Clin Cancer Res.2019;38(1):62.

10.1038/nrd2638

10.1016/j.febslet.2015.07.027

10.1016/j.molmed.2013.03.005

10.1152/ajpcell.1996.270.2.C522

10.1016/j.pharmthera.2005.04.013

10.1016/j.canlet.2008.02.044

10.1016/j.cellbi.2004.03.004

Ushio‐Fukai M. Localizing NADPH oxidase‐derived ROS. Sci STKE.2006;2006(349):re8.

10.1152/ajpcell.2001.280.4.C719

Bhayadia R Schmidt BM Melk A et al. Senescence‐Induced Oxidative Stress Causes Endothelial Dysfunction. J Gerontol A Biol Sci Med Sci.2016;71(2):161–169

10.1161/01.ATV.0000178993.13222.f2

Dong LF Swettenham E Eliasson J et al. Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res.2007;67(24):11906–11913.

El‐Awady MS Ansari HR Fil D et al. NADPH oxidase pathway is involved in aortic contraction induced by A3 adenosine receptor in mice. J Pharmacol Exp Ther.2011;338(2):711–717

Luu NT McGettrick HM Buckley CD et al. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of cytokine‐induced leukocyte recruitment. Stem Cells.2013;31(12):2690–2702.

10.3390/cells8091102

10.1007/s40265-014-0302-9

10.1038/nrc2442

Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park).2005;19(4 Suppl 3):7–16.

Saltz LB Lenz HJ Kindler HL et al. Randomized phase II trial of cetuximab bevacizumab and irinotecan compared with cetuximab and bevacizumab alone in irinotecan‐refractory colorectal cancer: the BOND‐2 study. J Clin Oncol.2007;25(29):4557–4561.