C-Polynomials for rational approximation to the exponential function

Springer Science and Business Media LLC - Tập 25 Số 1 - Trang 39-56 - 1975
Nørsett, Syvert P.1
1Institutt for numerisk matematikk, University of Trondheim N.T.H., Trondheim, Norway

Tóm tắt

A unique correspondence between (m, n) rational approximations to exp (q) of order at leastm and a polynomial of degreen, theC-polynomial, is obtained. This polynomial is then used to find an effective result regarding theA-acceptability of these approximations.

Tài liệu tham khảo

citation_title=Complex Analysis; citation_publication_date=1953; citation_id=CR1; citation_author=L. V. Ahlfors; citation_publisher=McGraw-Hill citation_journal_title=BIT; citation_title=A class ofA-stable methods; citation_author=O. Axelsson; citation_volume=9; citation_publication_date=1965; citation_pages=185-199; citation_id=CR2 citation_journal_title=J. of Comp. Phy.; citation_title=Rational Approximations to Matrix Exponential for Systems of Stiff Differential Equations; citation_author=J. L. Blue, H. K. Gummel; citation_volume=5; citation_issue=No. 1; citation_publication_date=1970; citation_pages=70-83; citation_id=CR3 citation_title=Numerical Solution of Initial Value Problems Using-stable Runge-Kutta Processes; citation_publication_date=1971; citation_id=CR4; citation_author=F. H. Chipman; citation_publisher=University of Waterloo citation_journal_title=BIT; citation_title=A special stability problem for linear multistep methods; citation_author=G. G. Dahlquist; citation_volume=3; citation_publication_date=1963; citation_pages=27-43; citation_id=CR5 citation_title=On Padé Approximations to the Exponential Function and-stable Methods for the Numerical Solution of Initial Value Problems; citation_publication_date=1969; citation_id=CR6; citation_author=B. L. Ehle; citation_publisher=University of Waterloo citation_journal_title=SIAM J. Num. Anal.; citation_title=Multistep Methods with Variable Matrix Coefficients; citation_author=J. D. Lambert, S. T. Sigurdsson; citation_volume=9; citation_publication_date=1972; citation_pages=715-733; citation_id=CR7 Lanczos, C.: Applied Analysis. Pitman, 1957 citation_journal_title=SIAM J. Num. Anal.; citation_title=Generalized Runge-Kutta processes for stable systems with large Lipschitz constants; citation_author=J. D. Lawson; citation_volume=4; citation_publication_date=1967; citation_pages=372-380; citation_id=CR9 Lawson, J. D.: Order Constrained Chebyshev Rational Approximation. To appear citation_title=Global accuracy and-stability of one- and two-step integration formulae for stiff ordinary differential equations; citation_publication_date=1969; citation_id=CR11; citation_author=W. Liniger; citation_publisher=Springer-Verlag citation_journal_title=SIAM J. Num. Anal.; citation_title=Efficient integration methods for stiff ordinary differential equations; citation_author=W. Liniger, R. A. Willoughby; citation_volume=7; citation_publication_date=1970; citation_pages=47-66; citation_id=CR12 Nørsett, S. P.: One-step Methods of Hermite Type for Numerical Integration of Stiff Systems. To appear in BIT Padé, H.: Sur la Représentation Ápprochée d'une Function par des Fractions Rationelles. Thesis, Ann de l'Ec Nor, Vol. 9, No. 3 (1892) citation_title=Special Functions; citation_publication_date=1960; citation_id=CR15; citation_author=F. D. Rainville; citation_publisher=MacMillan Com. Sigurdsson, S. T.: Multistep Methods with Variable Matrix Coefficients for Systems of Ordinary Differential Equations. Thesis, University of Dundee, Dundee Silverman, R. A.: Introductory Complex Analysis. Prentice Hall Inc. 1967 citation_journal_title=J. of Approx. Th.; citation_title=Chebyshev Rational Approximations to exp (−x) on [0, ∞〉 and applications to Heat-Conduction Problems; citation_author=W. J. Cody, G. Meinardus, R. S. Varga; citation_volume=2; citation_publication_date=1969; citation_pages=50-65; citation_id=CR18