Cân bằng giữa độ chính xác và khả năng diễn giải trong mô hình rủi ro tín dụng: Bằng chứng từ bài toán cho vay ngang hàng (P2P Lending)
Tóm tắt
Từ khóa
#Peer-to-Peer Lending Credit Risk Assessment Logistic Regression Random Forest Weight of Evidence Encodings Explainable AI LIME SHAP Model Interpretability Lending ClubTài liệu tham khảo
Lee, I., Shin, Y. J. Fintech: Ecosystem, business models, investment decisions, and challenges. (Business Horizons, 2018), 61(1), 35–46.
Liu, H., Qiao, H., Wang, S., Li, Y. Platform competition in peer-topeer lending considering risk control ability. European Journal of Operational Research, 2018, 274(1), 280–290.
Turner, A. After the crisis, the banks are safer but the debt is a danger. Financial Times. (2025, March 1). https://www.ft.com/content/9f481d3cb4de-11e8-a1d8-15c2dd1280ff
Huang, R. H. Online P2P lending and regulatory responses in China: Opportunities and challenges. European Business Organization Law Review (2018), 19(1), 78.
Havrylchyk, O. Regulatory framework for the loan-based crowdfunding platforms. OECD Economics Department Working Papers. (2021)
Chapman, J. M. Factors affecting credit risk in personal lending. In Commercial Banks and Consumer Installment Credit (1940), 109–139. NBER.
Ma, X., Sha, J., Wang, D., Yu, Y., Yang, Q., Niu, X. Study on a prediction of P2P network loan default based on the machine learning lightGBM and XGBoost algorithms according to different high dimensional data cleaning. Electronic Commerce Research and Applications (2018), 31, 24–39.
Duan, J. Financial system modeling using deep neural networks (DNNs) for effective risk assessment and prediction. Journal of the Franklin Institute (2019), 356, 4716–4731.
Sirignano, J., Sadhwani, A., Giesecke, K. Deep learning for mortgage risk (2016) arXiv preprint arXiv:1607.02470.
Kvamme, H., Sellereite, N., Aas, K., Sjursen, S. Predicting mortgage default using convolutional neural networks. Expert Systems with Applications (2018), 102, 207–217.
Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., Siddique, A. Risk and risk management in the credit card industry. (2016) Journal of Banking & Finance, 72, 218–239.
Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. Classification and regression trees. Monterey, CA: Wadsworth and Brooks. (1984).
Goodman, B., & Flaxman, S. European Union regulations on algorithmic decision-making and a “right to explanation”. AI Magazine (2017), 38(3), 50–57.
Ribeiro, M. T., Singh, S., & Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the
nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144.
Lundberg, S. M., & Lee, S.-I. A unified approach to interpreting
model predictions. In Advances in Neural Information Processing Systems (2017), 30, 4765–4774.
Hadji Misheva, B., Hirsa, A., Osterrieder, J., Kulkarni, O., & Fung Lin, S. Explainable AI in credit risk management. Credit Risk
Management (2021). https://ssrn.com/abstract=3768437
Albanesi, S., & Vamossy, D. F. Predicting consumer default: A deep learning approach. National Bureau of Economic Research Working Paper. (2019)
Ariza-Garz´on, M. J., Arroyo, J., Caparrini, A., & SegoviaVargas, M.-J. Explainability of a machine learning granting scoring
model in peer-to-peer lending. IEEE Access (2020), 8, 64873–64890.
Breiman, L. Random Forests Machine Learning (2021), 45, 5-32.
http://dx.doi.org/10.1023/A:1010933404324
Cox, D. R. The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological) (1958), 20(2), 215–242.
