Xây dựng nền kinh tế tuần hoàn tích cực đối với đa dạng sinh học: Tiềm năng của tái chế thông qua hợp tác công nghiệp

Lisa Junge1,2, Nora Adam1, Jonathan Clive Morris3,4, Edeltraud Guenther1
1United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), Dresden, Germany
2Internationales Hochschulinstitut (IHI) Zittau, Zittau, Germany
3Technische Universität Dresden, Chair of Business Administration, Esp. Sustainability Management and Environmental Accounting, Dresden, Germany
4Leibniz Institute of Ecological Urban and Regional Development, Dresden, Germany

Tóm tắt

Nền kinh tế tuyến tính truyền thống ngày càng đe dọa các hệ thống tự nhiên, dẫn đến sự suy thoái chưa từng thấy của đa dạng sinh học toàn cầu. Điều này gây nguy hiểm cho hoạt động của các nền kinh tế và đe dọa phúc lợi của các xã hội nhân loại. Nền kinh tế tuần hoàn (CE) mang đến cơ hội để tách rời việc tiêu thụ tài nguyên chưa qua sử dụng khỏi tăng trưởng kinh tế, tránh sự khai thác quá mức và phát sinh rác thải, qua đó ngăn chặn sự suy thoái của đa dạng sinh học. Trong bối cảnh này, hợp tác công nghiệp (IS) tạo ra một phương pháp để tăng cường việc tái sử dụng các vật liệu và sản phẩm phụ làm nguyên liệu đầu vào, thúc đẩy sự trao đổi tài nguyên giữa các lĩnh vực khác nhau và tăng cường phát triển bền vững. Tại đây, chúng tôi tổng hợp các chỉ số CE hiện có và xem xét liệu chúng có liên quan đến đa dạng sinh học hay không. Sau đó, chúng tôi tổng hợp kiến thức từ các nghiên cứu học thuật trước đây để phát triển các trường hợp tập trung vào các nhu cầu cơ bản của con người (thực phẩm, nước, năng lượng, cơ sở hạ tầng). Sử dụng những trường hợp này, chúng tôi chứng minh một mối quan hệ tiềm năng giữa đa dạng sinh học và CE từ góc độ IS, làm nổi bật cách thức các thực hành tuần hoàn tác động đến các yếu tố gây ra sự mất mát đa dạng sinh học. Chúng tôi kết luận rằng việc định lượng các hậu quả đối với đa dạng sinh học từ việc áp dụng các phương pháp CE vẫn còn hạn chế nhưng cung cấp một cơ hội để bảo vệ đa dạng sinh học. Cuối cùng, chúng tôi lập luận rằng cần có thêm nghiên cứu về tác động của đa dạng sinh học từ các thực hành tuần hoàn trên tất cả các trụ cột của CE và tất cả các chủ thể chỉ đạo sự chuyển đổi trong các mô hình kinh tế để thúc đẩy việc xem xét hệ thống về tài nguyên và vật liệu cũng như để hướng dẫn một cuộc chuyển đổi kinh tế. Điều này có thể giúp ngăn chặn sự mất mát đa dạng sinh học, biến đổi khí hậu và ô nhiễm - được gọi là cuộc khủng hoảng hành tinh ba.

Từ khóa

#đã tổng hợp #nền kinh tế tuần hoàn #đa dạng sinh học #hợp tác công nghiệp #phát triển bền vững #tài nguyên #tái chế

Tài liệu tham khảo

Pascual U, Balvanera P, Díaz S, Pataki G, Roth E, Stenseke M, Watson RT, BaşakDessane E, Islar M, Kelemen E, Maris V, Quaas M, Subramanian SM, Wittmer H, Adlan A, Ahn S, Al-Hafedh YS, Amankwah E, Asah ST, Berry P, Bilgin A, Breslow SJ, Bullock C, Cáceres D, Daly-Hassen H, Figueroa E, Golden CD, Gómez-Baggethun E, González-Jiménez D, Houdet J, Keune H, Kumar R, Ma K, May PH, Mead A, O’Farrell P, Pandit R, Pengue W, Pichis-Madruga R, Popa F, Preston S, Pacheco-Balanza D, Saarikoski H, Strassburg BB, van den Belt M, Verma M, Wickson F, Yagi N (2017) Valuing nature’s contributions to people: the IPBES approach. Curr Opin Environ Sustain 26–27:7–16. https://doi.org/10.1016/j.cosust.2016.12.006 Pascual U, Muradian R, Brander L, Gómez-Baggethun E, Martín-López B, Verma M (2010) Chapter 5: The economics of valuing ecosystem services and biodiversity. In: The economics of ecosystems and biodiversity: the ecological and economic foundations. Earthscan, London and Washington 185–258 The Economics of Ecosystems and Biodiversity (TEEB) (2010) Mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. UNEP Dasgupta P (2021) The economics of biodiversity: the Dasgupta review. Abridged version. HM Treasury, London, United Kingdom Diaz S, Settele J, Brondízio E, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman K, Butchart S, Chan K, Garibaldi L, Ichii K, Liu J, Subramanian S, Midgley G, Miloslavich P, Molnár Z, Obura D, Pfaff A, Zayas C (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:eaax3100. https://doi.org/10.1126/science.aax3100 Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 World Economic Forum (WEF) (2020) Nature risk rising: why the crisis engulfing nature matters for business and the economy. WEF in collaboration with PwC, Geneva, Switzerland WEF (2021) The global risks report 2021. World Economic Forum, Geneva, Switzerland IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany Independent Group of Scientists appointed by the Secretary-General (2019) Global sustainable development report 2019: the future is now – science for achieving sustainable development. United Nations, New York, NY Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148 Leclère D, Barrett M, Butchart S, Chaudhary A, De Palma A, DeClerck F, Di Marco M, Doelman J, Dürauer M, Freeman R, Hasegawa T, Hellweg S, Hilbers J, Hill S, Humpenöder F, Jennings N, Krisztin T, Young L (2020) Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585:551–556. https://doi.org/10.1038/s41586-020-2705-y Diaz S, Fargione J, Chapin FS III, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277. https://doi.org/10.1371/journal.pbio.0040277 Passarelli D, Denton F, Day A (2021) Beyond opportunism: the UN development system’s response to the triple planetary crisis. United Nations University, New York Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005 European Commission (2020) Categorisation system for the circular economy. A sector-agnostic approach for activities contributing to the circular economy. In: Hirsch P, Schempp C (eds). Publications Office of the European Union, Luxembuorg Ellen MacArthur Foundation (EMF) (2014) Towards the circular economy: accelerating the scale-up across global supply chains. EMF. Prepared in collaboration with the World Economic Forum and McKinsey & Company, Cowes, Isle of Wight Yong G, Joseph S, Sergio U, Pan Z (2013) Measuring China’s circular economy. Science 339:1526–1527. https://doi.org/10.1126/science.1227059 Dhanorkar S, Donohue K, Linderman K (2015) Repurposing materials and waste through online exchanges: overcoming the last hurdle. Prod Oper Manag 24:1473–1493. https://doi.org/10.1111/poms.12345 Calisto Friant M, Vermeulen WJV, Salomone R (2020) A typology of circular economy discourses: navigating the diverse visions of a contested paradigm. Resour Conserv Recycl 161:104917. https://doi.org/10.1016/j.resconrec.2020.104917 United Nations (2019) World population prospects 2019. Highlights. United Nations, Department of Economic and Social Affairs, Population Division, New York, NY Olsen SI (2019) The long road to a circular economy. Integr Environ Assess Manag 15:492–493. https://doi.org/10.1002/ieam.4170 European Investment Bank (EIB) (2020) The EIB circular economy guide - supporting the circular transition. EIB, Luxembuorg, Luxembuorg World Business Council for Sustainable Development (WBCSD), The Boston Consulting Group (BCG) (2018) The new big circle. Achieving growth and business model innovation through circular economy implementation. WBCSD and BCG, Geneva, Switzerland Guenther E (2008) Ökologieorientiertes Management Um-(weltorientiert) Denken in der BWL. UTB, Stuttgart, Germany Koh SCL, Gunasekaran A, Morris J, Obayi R, Ebrahimi SM (2017) Conceptualizing a circular framework of supply chain resource sustainability. Int J Oper Prod Manag 37:1520–1540. https://doi.org/10.1108/IJOPM-02-2016-0078 Korhonen J, Honkasalo A, Seppälä J (2018) Circular economy: the concept and its limitations. Ecol Econ 143:37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041 Repp L, Hekkert M, Kirchherr J (2021) Circular economy-induced global employment shifts in apparel value chains: job reduction in apparel production activities, job growth in reuse and recycling activities. Resour Conserv Recycl 171:105621. https://doi.org/10.1016/j.resconrec.2021.105621 European Commission (EC) (2018) Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions on a monitoring framework for the circular economy World Business Council for Sustainable Development (WBCSD) (2020) Circular transition indicators V1.0. Metrics for business, by business. WBCSD, Geneva, Switzerland Domenech T, Bleischwitz R, Doranova A, Panayotopoulos D, Roman L (2019) Mapping Industrial Symbiosis Development in Europe_ typologies of networks, characteristics, performance and contribution to the Circular Economy. Resour Conserv Recycl 141:76–98. https://doi.org/10.1016/j.resconrec.2018.09.016 Domenech Aparisi T (2022) Industrial symbiosis – a bottom-up business response to nexus challenges. In: Marsden T (ed) The SAGE handbook of nature: three volume set. SAGE Publications Ltd, 1263–1286 Cecchin A, Salomone R, Deutz P, Raggi A, Cutaia L (2020) Relating industrial symbiosis and circular economy to the sustainable development debate. In: Salomone R, Cecchin A, Deutz P, Raggi A, Cutaia L (eds) Industrial symbiosis for the circular economy: operational experiences, best practices and obstacles to a collaborative business approach. Springer International Publishing, Cham, Switzerland, pp 1–25 European Union (EU) (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives Chertow MR (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ 25:313–337. https://doi.org/10.1146/annurev.energy.25.1.313 Lombardi DR, Laybourn P (2012) Redefining industrial symbiosis. J Ind Ecol 16:28–37. https://doi.org/10.1111/j.1530-9290.2011.00444.x Di Maio F, Rem P (2015) A robust indicator for promoting circular economy through recycling. J Environ Prot 6:1095–1104. https://doi.org/10.4236/jep.2015.610096 Murray A, Skene K, Haynes K (2017) The circular economy: an interdisciplinary exploration of the concept and application in a global context. J Bus Ethics 140:369–380. https://doi.org/10.1007/s10551-015-2693-2 Geissdoerfer M, Vladimirova D, Evans S (2018) Sustainable business model innovation: a review. J Clean Prod 198:401–416. https://doi.org/10.1016/j.jclepro.2018.06.240 World Bank (2021) An international framework for eco-industrial parks, vol 2. World Bank, Washington, DC Webster J, Watson R (2002) Analyzing the past to prepare for the future: writing a literature review. MIS Q 26:xiii–xxiii. https://doi.org/10.2307/4132319 Zwiers J, Jaeger-Erben M, Hofmann F (2020) Circular literacy. A knowledge-based approach to the circular economy. Cult Organ 26:121–141. https://doi.org/10.1080/14759551.2019.1709065 Geisendorf S, Pietrulla F (2018) The circular economy and circular economic concepts—a literature analysis and redefinition. Thunderbird Int Bus Rev 60:771–782. https://doi.org/10.1002/tie.21924 D’Adamo I (2020) Adopting circular economy current practices and future perspectives. MDPI, Basel, Switzerland EC (2020) Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions a new circular economy action plan for a cleaner and more competitive Europe Ellen MacArthur Foundation (EMF) (2021) The nature imperative: how the circular economy tackles biodiversity loss. Ellen MacArthur Foundation (EMF), Cowes, Isle of Wight Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC Ragossnig AM, Schneider DR (2019) Circular economy, recycling and end-of-waste. Waste Manag Res 37:109–111. https://doi.org/10.1177/0734242X19826776 Haupt M, Hellweg S (2019) Measuring the environmental sustainability of a circular economy. Environ Sustain Indic 1–2:100005. https://doi.org/10.1016/j.indic.2019.100005 Buchmann-Duck J, Beazley KF (2020) An urgent call for circular economy advocates to acknowledge its limitations in conserving biodiversity. Sci Total Environ 727:138602. https://doi.org/10.1016/j.scitotenv.2020.138602 Sodhi MS (2015) Conceptualizing social responsibility in operations via stakeholder resource-based view. Prod Oper Manag 24:1375–1389. https://doi.org/10.1111/poms.12393 Cucchiella F, D’Adamo I, Lenny Koh SC, Rosa P (2015) Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew Sustain Energy Rev 51:263–272. https://doi.org/10.1016/j.rser.2015.06.010 Boons F, Baumann H, Hall J (2012) Conceptualizing sustainable development and global supply chains. Ecol Econ 83:134–143. https://doi.org/10.1016/j.ecolecon.2012.05.012 Subedi R, Karki M, Panday D (2020) Food system and water-energy-biodiversity nexus in Nepal: a review. Agronomy 10:1129. https://doi.org/10.3390/agronomy10081129 Krchnak KM, Smith DM, Deutz A (2011) Putting nature in the nexus: investing in natural infrastructure to advance water-energy-food security. In: Background papers for the stakeholder engagement process. IUCN, Bonn, Germany, 8 Zimmerer KS, de Haan S, Jones AD, Creed-Kanashiro H, Tello M, Carrasco M, Meza K, Plasencia Amaya F, Cruz-Garcia GS, Tubbeh R, Jiménez Olivencia Y (2019) The biodiversity of food and agriculture (Agrobiodiversity) in the anthropocene: research advances and conceptual framework. Anthropocene 25:100192. https://doi.org/10.1016/j.ancene.2019.100192 Kati V, Kassara C, Vrontisi Z, Moustakas A (2021) The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci Total Environ 768:144471. https://doi.org/10.1016/j.scitotenv.2020.144471 Haga C, Maeda M, Hotta W, Inoue T, Matsui T, Machimura T, Nakaoka M, Morimoto J, Shibata H, Hashimoto S, Saito O (2020) Scenario analysis of renewable energy–biodiversity nexuses using a forest landscape model. Front Ecol Evol 8(Article):155. https://doi.org/10.3389/fevo.2020.00155 Pörtner H-O, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WL, Diamond S, Donatti C, Duarte C, Eisenhauer N, Foden W, Gasalla MA, Handa C, Hickler T, Hoegh-Guldberg O, Ichii K, Jacob U, Insarov G, Kiessling W, Leadley P, Leemans R, Levin L, Lim M, Maharaj S, Managi S, Marquet PA, McElwee P, Midgley G, Oberdorff T, Obura D, Osman E, Pandit R, Pascual U, Pires PA, Popp A, Reyes-García V, Sankaran M, Settele J, Shin YJ, Sintayehu DW, Smith P, Steiner N, Strassburg B, Sukumar R, Trisos C, Val AL, Wu J, Aldrian E, Parmesan C, Pichs-Madruga R, Roberts DC, Rogers AD, Díaz S, Fischer M, Hashimoto S, Lavorel S, Wu N, Ngo HT (2021) Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change. IPBES secretariat, Bonn, Germany Pascual U, McElwee PD, Diamond SE, Ngo HT, Bai X, Cheung WWL, Lim M, Steiner N, Agard J, Donatti CI, Duarte CM, Leemans R, Managi S, Pires APF, Reyes-García V, Trisos C, Scholes RJ, Pörtner H-O (2022) Governing for transformative change across the biodiversity–climate–society nexus. Bioscience 72:684–704. https://doi.org/10.1093/biosci/biac031 Avdiushchenko A, Zajac P (2019) Circular economy indicators as a supporting tool for European regional development policies. Sustainability 11:3025. https://doi.org/10.3390/su11113025 Mayer A, Haas W, Wiedenhofer D, Krausmann F, Nuss P, Blengini G (2019) Measuring progress towards a circular economy. a monitoring framework for economy-wide material loop closing in the EU28. J Ind Ecol 23:62–76. https://doi.org/10.1111/jiec.12809 Rossi E, Bertassini A, Ferreira C, Amaral W, Ometto A (2020) Circular economy indicators for organizations considering sustainability and business models: plastic, textile and electro-electronic cases. J Clean Prod 247:119137. https://doi.org/10.1016/j.jclepro.2019.119137 Kasztelan A (2020) How circular are the European economies? A taxonomic analysis based on the INEC (Index of National Economies’ Circularity). Sustainability 12: https://doi.org/10.3390/su12187613 Franklin-Johnson E, Figge F, Canning L (2016) Resource duration as a managerial indicator for circular economy performance. J Clean Prod 133:589–598. https://doi.org/10.1016/j.jclepro.2016.05.023 Velenturf APM, Purnell P (2021) Principles for a sustainable circular economy. Sustain Prod Consum 27:1437–1457. https://doi.org/10.1016/j.spc.2021.02.018 Chouchane H, Jellema A, Polman NBP, Roebeling PC (2022) Scoping study on the ability of circular economy to enhance biodiversity. Identifying knowledge gaps and research questions. Wageningen University & Research, Wageningen, The Netherlands Andrews-Speed P, Bleischwitz R, Boersma T, Johnson C, Kemp G, VanDeveer SD (2012) The global resource nexus. The Struggles for Land, Energy, Food, Water, and Minerals. Transatlantic Academy, Washington, DC Lal R (2015) The nexus approach to managing water, soil and waste under changing climate and growing demands on natural resources. In: Kurian M, Ardakanian R (eds) Governing the nexus: water, soil and waste resources considering global change. Springer International Publishing, Cham, Switzerland, pp 39–60 International Institute for Sustainable Development (IISD) (2019) Why biodiversity matters: mapping the linkages between biodiversity and the SDGs. In: IISD SDG Knowl. Hub. https://sdg.iisd.org/commentary/policy-briefs/why-biodiversity-matters-mapping-the-linkages-between-biodiversity-and-the-sdgs/. Accessed 20 Jul 2020 Johansson N (2021) Circular agreements—exploring the role of agreements and deals as a political tool for a circular economy. Circ Econ Sustain 1:499–505. https://doi.org/10.1007/s43615-021-00004-5 Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ (2017) The circular economy – a new sustainability paradigm? J Clean Prod 143:757–768. https://doi.org/10.1016/j.jclepro.2016.12.048 Parchomenko A, Nelen D, Gillabel J, Rechberger H (2019) Measuring the circular economy - a multiple correspondence analysis of 63 metrics. J Clean Prod 210:200–216. https://doi.org/10.1016/j.jclepro.2018.10.357 Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452 Coderoni S, Perito MA (2020) Sustainable consumption in the circular economy An analysis of consumers’ purchase intentions for waste-to-value food. J Clean Prod 252:119870. https://doi.org/10.1016/j.jclepro.2019.119870 Benton TG, Bieg C, Harwartt H, Pudasaini R, Wellesley L (2021) Food system impacts on biodiversity loss: three levers for food system transformation in support of nature. United Nations Environment Programme (UNEP), Chatham House, London, United Kingdom Chaudhary A, Kastner T (2016) Land use biodiversity impacts embodied in international food trade. Glob Environ Change 38:195–204. https://doi.org/10.1016/j.gloenvcha.2016.03.013 Dudley N, Alexander S (2017) Agriculture and biodiversity: a review. Biodiversity 18:45–49. https://doi.org/10.1080/14888386.2017.1351892 Kehoe L, Romero-Muñoz A, Polaina E, Estes L, Kreft H, Kuemmerle T (2017) Biodiversity at risk under future cropland expansion and intensification. Nat Ecol Evol 1:1129–1135. https://doi.org/10.1038/s41559-017-0234-3 Marques A, Martins IS, Kastner T, Plutzar C, Theurl MC, Eisenmenger N, Huijbregts MAJ, Wood R, Stadler K, Bruckner M, Canelas J, Hilbers JP, Tukker A, Erb K, Pereira HM (2019) Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat Ecol Evol 3:628–637. https://doi.org/10.1038/s41559-019-0824-3 FAO (2019) The state of the world’s biodiversity for food and agriculture. FAO Commission on Genetic Resources for Food and Agriculture Assessments, Rome, Italy Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A (2021) Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food 2:198–209. https://doi.org/10.1038/s43016-021-00225-9 FAO (2017) The future of food and agriculture – trends and challenges. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy Jurgilevich A, Birge T, Kentala-Lehtonen J, Korhonen-Kurki K, Pietikäinen J, Saikku L, Schösler H (2016) Transition towards circular economy in the food system. Sustainability 8:69. https://doi.org/10.3390/su8010069 Ajila C, Brar K, Verma M, Tyagi R, Godbout S, Valéro J (2012) Bio-processing of agro-byproducts to animal feed. Crit Rev Biotechnol 32:1–19. https://doi.org/10.3109/07388551.2012.659172 FAO (2013) Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome, Italy Fowles TM, Nansen C (2019) Artificial selection of insects to bioconvert pre-consumer organic wastes. A review. Agron Sustain Dev 39(Article):31. https://doi.org/10.1007/s13593-019-0577-z Van Zanten HHE, Herrero M, Van Hal O, Röös E, Muller A, Garnett T, Gerber PJ, Schader C, De Boer IJM (2018) Defining a land boundary for sustainable livestock consumption. Glob Change Biol 24:4185–4194. https://doi.org/10.1111/gcb.14321 Castelli LE, Gleiser RM, Battán-Horenstein M (2020) Role of saprophagous fly biodiversity in ecological processes and urban ecosystem services. Ecol Entomol 45:718–726. https://doi.org/10.1111/een.12849 Kavran M, Zgomba M, IgnjatovicCupina A, Petrić D (2016) Edible insects - safe food for humans and livestock. SERBIAN ACAD Sci ARTS 171:251–300 Bosch G, van Zanten HHE, Zamprogna A, Veenenbos M, Meijer NP, van der Fels-Klerx HJ, van Loon JJA (2019) Conversion of organic resources by black soldier fly larvae: legislation, efficiency and environmental impact. J Clean Prod 222:355–363. https://doi.org/10.1016/j.jclepro.2019.02.270 Smetana S, Palanisamy M, Mathys A, Heinz V (2016) Sustainability of insect use for feed and food: life Cycle Assessment perspective. J Clean Prod 137:741–751. https://doi.org/10.1016/j.jclepro.2016.07.148 Röös E, Bajželj B, Smith P, Patel M, Little D, Garnett T (2017) Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob Environ Change 47:1–12. https://doi.org/10.1016/j.gloenvcha.2017.09.001 Uçkun Kiran E, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399. https://doi.org/10.1016/j.fuel.2014.05.074 Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian R (2015) Food waste-to-energy conversion technologies: current status and future directions. Waste Manag 38:399–408. https://doi.org/10.1016/j.wasman.2014.12.004 Dai Y, Zheng H, Jiang Z, Xing B (2020) Comparison of different crop residue-based technologies for their energy production and air pollutant emission. Sci Total Environ 707:136122. https://doi.org/10.1016/j.scitotenv.2019.136122 Devi S, Gupta C, Jat SL, Parmar MS (2017) Crop residue recycling for economic and environmental sustainability: the case of India. Open Agric 2:486–494. https://doi.org/10.1515/opag-2017-0053 Banks CJ, Chesshire M, Heaven S, Arnold R (2011) Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102:612–620. https://doi.org/10.1016/j.biortech.2010.08.005 Mahmudul HM, Rasul MG, Akbar D, Narayanan R, Mofijur M (2022) Food waste as a source of sustainable energy: technical, economical, environmental and regulatory feasibility analysis. Renew Sustain Energy Rev 166:112577. https://doi.org/10.1016/j.rser.2022.112577 Khan F, Ali Y (2022) Moving towards a sustainable circular bio-economy in the agriculture sector of a developing country. Ecol Econ 196:107402. https://doi.org/10.1016/j.ecolecon.2022.107402 Scarlat N, Fahl F, Lugato E, Monforti-Ferrario F, Dallemand JF (2019) Integrated and spatially explicit assessment of sustainable crop residues potential in Europe. Biomass Bioenergy 122:257–269. https://doi.org/10.1016/j.biombioe.2019.01.021 Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winemiller KO, Ripple WJ (2020) Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50:85–94. https://doi.org/10.1007/s13280-020-01318-8 Hanjra MA, Blackwell J, Carr G, Zhang F, Jackson TM (2012) Wastewater irrigation and environmental health: implications for water governance and public policy. Int J Hyg Environ Health 215:255–269. https://doi.org/10.1016/j.ijheh.2011.10.003 Wetlands International (2010) Biodiversity loss and the global water crisis. A fact book on the links between biodiversity and water security. Wetlands International, Wageningen, The Netherlands Chojnacka K, Witek-Krowiak A, Moustakas K, Skrzypczak D, Mikula K, Loizidou M (2020) A transition from conventional irrigation to fertigation with reclaimed wastewater: prospects and challenges. Renew Sustain Energy Rev 130:109959. https://doi.org/10.1016/j.rser.2020.109959 Yadav RK, Minhas PS, Khajanchi-Lal, Dagar JC (2016) Potential of wastewater disposal through tree plantations. In: Dagar JC, Minhas P (eds) Agroforestry for the management of waterlogged saline soils and poor-quality waters. Springer India, New Delhi, India, 163–179 Abuzaid AS, Fadl ME (2018) Mapping potential risks of long-term wastewater irrigation in alluvial soils. Egypt Arab J Geosci 11:433. https://doi.org/10.1007/s12517-018-3780-3 Zehnsdorf A, Willebrand K, Trabitzsch R, Knechtel S, Blumberg M, Müller R (2019) Wetland roofs as an attractive option for decentralized water management and air conditioning enhancement in growing cities-a review. Water 11:1845. https://doi.org/10.3390/w11091845 Van PTH, Tin NT, Hien VTD, Quan TM, Thanh BX, Hang VT, Tuc DQ, Dan NP, Khoa LV, Phu VL, Son NT, Luong ND, Kwon E, Park C, Jung J, Yoon I, Lee S (2015) Nutrient removal by different plants in wetland roof systems treating domestic wastewater. Desalination Water Treat 54:1344–1352. https://doi.org/10.1080/19443994.2014.915767 Vo T-D-H, Bui X-T, Nguyen D-D, Nguyen V-T, Ngo H-H, Guo W, Nguyen P-D, Nguyen C-N, Lin C (2018) Wastewater treatment and biomass growth of eight plants for shallow bed wetland roofs. Bioresour Technol 247:992–998. https://doi.org/10.1016/j.biortech.2017.09.194 Masi F, Rizzo A, Regelsberger M (2018) The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. Sustain Waste Wastewater Manag 216:275–284. https://doi.org/10.1016/j.jenvman.2017.11.086 Knapp S, Schmauck S, Zehnsdorf A (2019) Biodiversity impact of green roofs and constructed wetlands as progressive eco-technologies in urban areas. Sustainability 11:5846. https://doi.org/10.3390/su11205846 Serres N, Braymand S, Feugeas F (2016) Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. J Build Eng 5:24–33. https://doi.org/10.1016/j.jobe.2015.11.004 Jorat E, Goddard M, Manning P, Lau H, Ngeow S, Sohi S, Manning D (2019) Passive CO2 removal in urban soils: evidence from brownfield sites. Sci Total Environ 703:135573. https://doi.org/10.1016/j.scitotenv.2019.135573 Jorat E, Kolosz B, Goddard M, Sohi S, Akgün N, Dissanayake D, Manning D (2017) Geotechnical requirements for capturing CO2 through highways land. Int J GEOMATE 13:22–27. https://doi.org/10.21660/2017.35.6633 Jorat ME, Goddard MA, Manning P, Lau HK, Ngeow S, Sohi SP, Manning DAC (2020) Passive CO2 removal in urban soils: evidence from brownfield sites. Sci Total Environ 703:135573. https://doi.org/10.1016/j.scitotenv.2019.135573 Washbourne C-L, Renforth P, Manning DAC (2012) Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. Sci Total Environ 431:166–175. https://doi.org/10.1016/j.scitotenv.2012.05.037 Washbourne C-L, Lopez-Capel E, Renforth P, Ascough PL, Manning DAC (2015) Rapid removal of atmospheric CO2 by urban soils. Environ Sci Technol 49:5434–5440. https://doi.org/10.1021/es505476d Hopwood J (2008) The contribution of roadside grassland restorations to native bee conservation. Biol Conserv 141:2632–2640. https://doi.org/10.1016/j.biocon.2008.07.026 Haase D, Haase A, Rink D (2014) Conceptualizing the nexus between urban shrinkage and ecosystem services. Landsc Urban Plan 132:159–169. https://doi.org/10.1016/j.landurbplan.2014.09.003 Tamayo P, Pascual F, González Megías A (2014) Effects of roads on insects: a review. Biodivers Conserv 24:659–682. https://doi.org/10.1007/s10531-014-0831-2 Taubken N, Feld T (2018) Impact measurement and the concept of materiality—new requirements and approaches for materiality assessments. Nachhalt Sustain Manag Forum 26:87–100. https://doi.org/10.1007/s00550-018-0483-x