Building Mathematical Understanding Through Collective Property Noticing

Jo Towers1, Lyndon C. Martin2
1Werklund School of Education, University of Calgary, Calgary, Canada
2York University, Toronto, Canada

Tóm tắt

In this article we explore the mechanisms through which one group of preservice teachers engage in Collective Property Noticing—a phenomenon in which group members integrate individual contributions such that the group, as a unit, notices mathematical properties of their collective image. Drawing on improvisational theory to help to illuminate these collaborative processes, we claim that Collective Property Noticing is a capacity that is vital for mathematical sense-making in collaborative groups and we propose several conditions under which it is appropriate for a teacher to intervene in students’ learning in a problem-solving setting in order to provoke Collective Property Noticing. Résumé: Dans cet article, nous nous penchons sur les mécanismes grâce auxquels un groupe de futurs enseignants participe à des activités d’observation des propriétés collectives, durant lesquelles les membres du groupe intègrent les contributions individuelles de chacun de façon à ce que le groupe en tant qu’équipe puisse observer les propriétés de son image collective. Sur la base d’une théorie de l’improvisation servant à éclairer ces processus de collaboration, nous postulons que l’observation des propriétés collectives constitue une habileté vitale pour la construction du sens mathématique dans les groupes de collaboration, et nous formulons plusieurs conditions dans lesquelles il est approprié que les enseignants interviennent dans l’apprentissage des étudiants, dans un contexte de résolution de problèmes, de façon à stimuler l’observation des propriétés collectives.

Tài liệu tham khảo

Bauersfeld, H. (1988). Interaction, construction, and knowledge—Alternative perspectives for mathematics education. In D. A. Grouws & T. J. Cooney (Eds.), Perspectives on research on effective mathematics teaching: Research agenda for mathematics education (Vol. 1, pp. 27–46). Reston, VA: National Council of Teachers of Mathematics and Lawrence Erlbaum Associates. Becker, H. (2000). The etiquette of improvisation. Mind, Culture, and Activity, 7 (3), 171–176. Berenson, S. B., Cavey, L. O., Clark, M., & Staley, K. (2001). Adapting Pirie and Kieren’;s model of mathematical understanding to teacher preparation. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the twenty-fifth annual meeting of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 137–144). Utrecht, the Netherlands: International Group for the Psychology of Mathematics Education. Bowers, J. S., & Nickerson, S. (2001). Identifying cyclic patterns of interaction to study individual and collective learning. Mathematical Thinking and Learning, 3 (1), 1–28. Cavey, L. O., & Berenson, S. B. (2005). Learning to teach high school mathematics: Patterns of growth in understanding right triangle trigonometry during lesson plan study. Journal of Mathematical Behavior, 24, 171–190. Cobb, P. (1998). Learning from distributed theories of intelligence. Mind, Culture, and Activity, 5 (3), 187–204. Davis, B., & Simmt, E. (2003). Understanding learning systems: Mathematics education and complexity science. Journal for Research in Mathematics Education, 34, 137–167. Esmonde, I. (2009). Mathematics learning in groups: Analyzing equity in two cooperative activity structures. Journal of the Learning Sciences, 18 (2), 247–284. Gordon Calvert, L. M. (2001). Mathematical conversations within the practice of mathematics. New York, NY: Peter Lang King, K. (2001). Conceptually-oriented mathematics teacher development: Improvisation as a metaphor. For the Learning of Mathematics, 21 (3), 9–15. Martin, L. C. (2008). Folding back and the growth of mathematical understanding: Extending the Pirie-Kieren theory. Journal of Mathematical Behavior, 27 (1), 64–85. Martin, L. C., & Towers, J. (2009). Improvisational coactions and the growth of collective mathematical understanding. Research in Mathematics Education, 11 (1), 1–20. Martin, L. C., & Towers, J. (2011). Improvisational understanding in the mathematics classroom. In R. Keith Sawyer (Ed.), Structure and improvisation in creative teaching (pp. 252–278). New York, NY: Cambridge University Press. Martin, L. C., & Towers, J. (2012). Growing mathematical understanding through Collective Image Making, Collective Image Having, and Collective Property Noticing. Manuscript submitted for publication. Martin, L. C., Towers, J., & Pirie, S. E. B. (2006). Collective mathematical understanding as improvisation. Mathematical Thinking and Learning, 8 (2), 149–183. Martin, L. C., Towers, J., & Ruttenberg, R. (2012, November). Expanding the “Dynamical Theory for the Growth of Mathematical Understanding” to the collective. In L. R. Van Zoest, J.-J. Lo, & J. L. Karatky (Eds.) Proceedings of the 34th annual meeting of the North American chapter of the International Group for the Psychology of Mathematics Education (pp. 1182–1185). Kalamazoo: Western Michigan University. Meel, D. E. (2003). Models and theories of mathematical understanding: Comparing Pirie and Kieren’;s theory for the growth of mathematical understanding and APOS theory. In A. Selden, E. Dubinsky, G. Harel, & F. Hitt (Eds.), Conference Board of the Mathematical Sciences, Issues in Mathematics Education: Vol. 12. Issues in Collegiate Mathematics Education V (pp. 132–181). Providence, RI: American Mathematical Society. Owens, K., & Outhred, L. (2006). The complexity of learning geometry and measurement. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 83–115). Rotterdam, The Netherlands: Sense Publishers. Pirie, S. E. B. (1996). What are the data? An exploration of the use of video-recording as a data gathering tool in the mathematics classroom. In E. Jakubowski, D. Watkins, & H. Biske (Eds.), Proceedings of the 16th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 553–559). Columbus, OH: Eric Clearinghouse for Science, Mathematics, and Environmental Education. Pirie, S. E. B., & Kieren, T. E. (1991). Folding back: Dynamics in the growth of mathematical understanding. In F. Furinghetti (Ed.), Proceedings of the fifteenth annual meeting of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 169–176). Assisi, Italy: Program Committee of the fifteenth PME Conference. Pirie, S. E. B., & Kieren, T. E. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it? Educational Studies in Mathematics, 26 (2–3), 165–190. Pirie, S. E. B., Kieren, T. E., & Reid, D. (1994). Mathematical understanding: Always under construction. In P. da Ponte & F. Matos (Eds.), Proceedings of the 18th annual meeting of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 49–56). Lisbon, Portugal: University of Lisbon Press. Remillard, J. T. (1997, April). Mathematics teaching as improvisation: A problem for policy implementation. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL. Salomon, G. (1993). No distribution without individuals’; cognition: A dynamic interactional view. In G. Salomon (Ed.), Distributed cognitions (pp. 111–138). Cambridge, England: Cambridge University Press. Sassi, A. M., & Goldsmith, L. T. (1995). Beyond recipe and behind the magic: Mathematics teaching as improvisation. Retrieved from ERIC database. (ED389614) Sawyer, R. K. (2003). Group creativity: Music, theatre, collaboration. Mahwah, NJ: Lawrence Erlbaum Associates. Stahl, G. (2006). Group cognition. Computer support for building collaborative knowledge. Cambridge, MA: Massachusetts Institute of Technology. Tait–McCutcheon, S., Drake, M., & Sherley, B. (2007). From direct instruction to active construction: Teaching and learning basic facts. Mathematics Education Research Journal, 23, 321–345. doi:10.1007/s13394-011-0018-z Towers, J., & Martin, L. C. (2006). Improvisational co-actions and the growth of collective mathematical understanding. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 631–638). Merida, Mexico: Universidad Pedagógica Nacional. Towers, J., & Martin, L. C. (2009). The emergence of a “better” idea: Preservice teachers’; growing understanding of mathematics for teaching. For the Learning of Mathematics, 29 (3), 44–48. Towers, J., Martin, L. C., & Heater, B. (2012). Teaching and learning mathematics in the collective. Journal of Mathematical Behavior, 32 (3), 424–433. Towers, J., & Proulx, J. (2012). An enactivist perspective on teaching mathematics—Reconceptualizing and expanding teaching actions. Mathematics Teacher Education and Development, 15 (1), 5–28. Towers, J., Rapke, T., Pascuzzo, T., & Martin, L. C. (2010). “Yes, and...”: How groups build ideas in the collective. In P. Brosnan, D. B. Erchick, & L. Flevares (Eds.), Proceedings of the 32nd annual meeting of the North American chapter of the International Group for the Psychology of Mathematics Education (Vol. 4, p. 461). Columbus: The Ohio State University. Warner, L. B., & Schorr, R. (2004). From primitive knowing to formalising: The role of student-to-student questioning in the development of mathematical understanding. In D. E. McDougall & J. A. Ross (Eds.), Proceedings of the twenty-sixth annual meeting of the North American chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 429–438). Toronto, Canada: OISE, University of Toronto. Zazkis, R., & Campbell, S. (1996). Divisibility and multiplicative structure of natural numbers: Preservice teachers’; understanding. Journal for Research in Mathematics Education, 27 (5), 540–563.