Brown and Black Carbon Emitted by a Marine Engine Operated on Heavy Fuel Oil and Distillate Fuels: Optical Properties, Size Distributions, and Emission Factors

Journal of Geophysical Research D: Atmospheres - Tập 123 Số 11 - Trang 6175-6195 - 2018
Joel C. Corbin1,2, Simone M. Pieber1, Hendryk Czech3, Marco Zanatta1,4, Gert Jakobi5,6, Dario Massabò7,8, Jürgen Orasche5,3,6, Imad El Haddad1, A. A. Mensah9, Benjamin Stengel10,5, Luka Drinovec11,12, Griša Močnik11,12, Ralf Zimmermann5,3,6, Andrê S. H. Prévôt1, M. Gysel1
1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
2Now at National Research Council Canada, Ottawa, Canada
3Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
4Now at Alfred Wegener Institute, Bremerhaven, Germany
5Helmholtz Virtual Institute for Complex Molecular Systems in Environmental Health Neuherberg Germany
6Joint Mass Spectrometry Centre, Cooperation Group “Comprehensive Molecular Analytics”, Helmholtz Zentrum München, Neuherberg, Germany
7Department of Physics, University of Genoa, Genova, Italy
8INFN Sezione di Genova, Genova, Italy
9Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
10Department of Piston Machines and Internal Combustion Engines, University of Rostock, Rostock, Germany
11Aerosol d.o.o, Ljubljana, Slovenia
12Now at Condensed Matter Physics Department Jožef Stefan Institute Ljubljana Slovenia

Tóm tắt

Abstract

We characterized the chemical composition and optical properties of particulate matter (PM) emitted by a marine diesel engine operated on heavy fuel oil (HFO), marine gas oil (MGO), and diesel fuel (DF). For all three fuels, ∼80% of submicron PM was organic (and sulfate, for HFO at higher engine loads). Emission factors varied only slightly with engine load. Refractory black carbon (rBC) particles were not thickly coated for any fuel; rBC was therefore externally mixed from organic and sulfate PM. For MGO and DF PM, rBC particles were lognormally distributed in size (mode at drBC≈120 nm). For HFO, much larger rBC particles were present. Combining the rBC mass concentrations with in situ absorption measurements yielded an rBC mass absorption coefficient MACBC,780nm of 7.8 ± 1.8 m2/g at 780 nm for all three fuels. Using positive deviations of the absorption Ångström exponent (AAE) from unity to define brown carbon (brC), we found that brC absorption was negligible for MGO or DF PM (AAE(370,880 nm)≈1.0 ± 0.1) but typically 50% of total 370‐nm absorption for HFO PM. Even at 590 nm, ∼20  of the total absorption was due to brC. Using absorption at 880 nm as a reference for BC absorption and normalizing to organic PM mass, we obtained a MACOM,370nm of 0.4 m2/g at typical operating conditions. Furthermore, we calculated an imaginary refractive index of (0.045 ± 0.025)(λ/370nm)−3 for HFO PM at 370 nm>λ > 660 nm, more than twofold greater than previous recommendations. Climate models should account for this substantial brC absorption in HFO PM.

Từ khóa


Tài liệu tham khảo

10.5194/acp-7-1523-2007

10.1073/pnas.1205910109

10.1080/02786820500421521

10.5194/acp-14-1881-2014

10.1016/j.jaerosci.2004.12.001

10.5194/acp-13-9337-2013

10.5194/acp-10-1773-2010

10.1021/ef049736y

10.1021/es071686z

10.1021/acs.est.8b01764

10.1021/ac061249n

10.5194/amt-8-1965-2015

10.1021/acs.estlett.6b00488

10.1029/2002JD002898

10.1016/j.atmosenv.2009.04.059

10.1016/j.jaerosci.2009.04.002

10.1016/j.jaerosci.2004.09.004

10.1016/j.atmosenv.2007.10.042

10.1080/02786820601118398

10.1364/AO.50.002037

10.1029/2010JD014933

10.1016/j.ijthermalsci.2012.01.019

10.1080/02786826.2016.1205728

10.1080/02786820601055392

10.1080/02786826.2010.533215

10.1080/02786826.2010.539291

10.1021/es202525q

Laborde M., 2012, Black carbon physical properties and mixing state in the European megacity Paris, Atmospheric Chemistry and Physics, 12, 25,121

10.5194/amt-5-1031-2012

10.5194/amt-5-3077-2012

10.5194/acp-10-4207-2010

10.5194/acp-12-3985-2012

10.1029/2008JD011300

10.5194/acp-13-10535-2013

10.1021/cr5006167

10.5194/acp-7-5061-2007

10.1016/S0082-0784(00)80684-0

10.1016/j.oceaneng.2015.09.029

10.1080/02786820701422278

10.1002/2014GL062443

10.1038/ngeo2901

10.1080/02786826.2015.1047012

10.1021/acs.est.5b00211

10.1016/S0021-8502(98)00763-0

10.5194/acp-16-2359-2016

10.1016/j.jaerosci.2013.02.006

10.1016/j.atmosenv.2015.02.058

10.1080/02786820701199728

10.1016/j.jaerosci.2010.02.013

10.1016/j.apenergy.2015.05.115

10.1021/ef900975e

10.1371/journal.pone.0126536

10.1080/02786826.2015.1022248

10.5194/acp-13-8365-2013

10.5194/acp-17-5063-2017

10.1039/b908180a

10.1080/02786826.2016.1238033

10.1007/s00216-014-8408-1

10.1002/2016GL069786

10.1021/es702253m

10.1029/2006JD007076

10.1029/2008GL033968

10.1080/02786826.2015.1074978

Seinfeld J. H., 2012, Atmospheric chemistry and physics: From air pollution to climate change

10.1021/es502484z

10.1080/02786820701197078

10.1080/02786820117868

10.1080/02786826.2011.560909

10.1364/AO.42.003726

Stout S., 2016, Standard handbook oil spill environmental forensics: Fingerprinting and source identification

10.1007/s11356-016-6724-z

10.5194/amt-8-1701-2015

10.1073/pnas.0906548107

10.1002/2016JD024748

10.5194/acp-17-7965-2017

10.5194/acp-16-1433-2016

10.1038/ncomms15883

10.1016/j.atmosenv.2014.10.054

10.5194/acp-17-4229-2017