Sự kích thích rộng trong plasma gluon quá tải 2+1D

Kirill Boguslavski1, Aleksi Kurkela2, T. Lappi3, Jarkko Peuron4
1Institute for Theoretical Physics, Technische Universität Wien, Wiedner Hauptstrasse 8-10/136, 1040, Wien, Austria
2Faculty of Science and Technology, University of Stavanger, Kjell Arholms gate 41, 4021, Stavanger, Norway
3Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
4Departmen of Astronomy and Theoretical Physics, Sölvegatan 14A, S-223 62, Lund, Sweden

Tóm tắt

Abstract Được thúc đẩy bởi các giai đoạn ban đầu của va chạm ion nặng năng lượng cao, chúng tôi nghiên cứu các kích thích của lý thuyết gauge 2+1 chiều ở trạng thái xa khỏi cân bằng bằng cách sử dụng mô phỏng lưới thống kê cổ điển. Chúng tôi phát triển các nhiễu loạn trường trên một nền tảng rất quá tải đang trải qua sự phát triển tự tương tự. Trong khi trong không gian 3+1 chiều, các kích thích được mô tả bởi lý thuyết vòng nhiệt cứng, cấu trúc của chúng trong không gian 2+1 chiều là phi tuyến tính và không thể suy diễn được. Những tương tác không thể suy diễn này dẫn đến các đỉnh kích thích rộng trong các hàm tương quan phổ và thống kê. Độ rộng của chúng so sánh với tần số của các kích thích mềm, cho thấy sự vắng mặt của các phân tử quasar mềm trong những lý thuyết này. Kết quả của chúng tôi cũng gợi ý rằng các kích thích ở mức động lượng cao hơn đủ bền lâu, đến mức có thể tồn tại mô tả lý thuyết động lực học hiệu quả cho các hệ thống kiểu Glasma 2+1 chiều, nhưng hạt va chạm của nó phải được xác định một cách không thể suy diễn.

Từ khóa

#kích thích #lý thuyết gauge #mô phỏng lưới #plasma gluon #tương tác phi tuyến tính

Tài liệu tham khảo

F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].

T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].

F. Gelis, Initial state and thermalization in the color glass condensate framework, Int. J. Mod. Phys. E 24 (2015) 1530008 [arXiv:1508.07974] [INSPIRE].

A. Krasnitz and R. Venugopalan, Nonperturbative computation of gluon minijet production in nuclear collisions at very high-energies, Nucl. Phys. B 557 (1999) 237 [hep-ph/9809433] [INSPIRE].

A. Krasnitz, Y. Nara and R. Venugopalan, Coherent gluon production in very high-energy heavy ion collisions, Phys. Rev. Lett. 87 (2001) 192302 [hep-ph/0108092] [INSPIRE].

T. Lappi, Production of gluons in the classical field model for heavy ion collisions, Phys. Rev. C 67 (2003) 054903 [hep-ph/0303076] [INSPIRE].

A. Krasnitz, Y. Nara and R. Venugopalan, Classical gluodynamics of high-energy nuclear collisions: An Erratumn and an update, Nucl. Phys. A 727 (2003) 427 [hep-ph/0305112] [INSPIRE].

T. Lappi, Energy density of the glasma, Phys. Lett. B 643 (2006) 11 [hep-ph/0606207] [INSPIRE].

R.J. Fries, J.I. Kapusta and Y. Li, Near-fields and initial energy density in the color glass condensate model, nucl-th/0604054 [INSPIRE].

G. Chen, R.J. Fries, J.I. Kapusta and Y. Li, Early time dynamics of gluon fields in high energy nuclear collisions, Phys. Rev. C 92 (2015) 064912 [arXiv:1507.03524] [INSPIRE].

B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].

B. Schenke, P. Tribedy and R. Venugopalan, Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions, Phys. Rev. C 86 (2012) 034908 [arXiv:1206.6805] [INSPIRE].

H. Mäntysaari, B. Schenke, C. Shen and P. Tribedy, Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC, Phys. Lett. B 772 (2017) 681 [arXiv:1705.03177] [INSPIRE].

D. Gelfand, A. Ipp and D. Müller, Simulating collisions of thick nuclei in the color glass condensate framework, Phys. Rev. D 94 (2016) 014020 [arXiv:1605.07184] [INSPIRE].

A. Ipp and D. Müller, Broken boost invariance in the Glasma via finite nuclei thickness, Phys. Lett. B 771 (2017) 74 [arXiv:1703.00017] [INSPIRE].

A. Ipp and D. Müller, Implicit schemes for real-time lattice gauge theory, Eur. Phys. J. C 78 (2018) 884 [arXiv:1804.01995] [INSPIRE].

P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE].

A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [INSPIRE].

P. Romatschke and R. Venugopalan, Collective non-Abelian instabilities in a melting color glass condensate, Phys. Rev. Lett. 96 (2006) 062302 [hep-ph/0510121] [INSPIRE].

T. Epelbaum and F. Gelis, Fluctuations of the initial color fields in high energy heavy ion collisions, Phys. Rev. D 88 (2013) 085015 [arXiv:1307.1765] [INSPIRE].

T. Epelbaum and F. Gelis, Pressure isotropization in high energy heavy ion collisions, Phys. Rev. Lett. 111 (2013) 232301 [arXiv:1307.2214] [INSPIRE].

A.H. Mueller and D.T. Son, On the Equivalence between the Boltzmann equation and classical field theory at large occupation numbers, Phys. Lett. B 582 (2004) 279 [hep-ph/0212198] [INSPIRE].

S. Jeon, The Boltzmann equation in classical and quantum field theory, Phys. Rev. C 72 (2005) 014907 [hep-ph/0412121] [INSPIRE].

J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739 (2004) 3 [hep-ph/0409233] [INSPIRE].

A. Kurkela and G.D. Moore, UV cascade in classical Yang-Mills theory, Phys. Rev. D 86 (2012) 056008 [arXiv:1207.1663] [INSPIRE].

J. Berges, S. Scheffler and D. Sexty, Bottom-up isotropization in classical-statistical lattice gauge theory, Phys. Rev. D 77 (2008) 034504 [arXiv:0712.3514] [INSPIRE].

J. Berges, S. Schlichting and D. Sexty, Over-populated gauge fields on the lattice, Phys. Rev. D 86 (2012) 074006 [arXiv:1203.4646] [INSPIRE].

S. Schlichting, Turbulent thermalization of weakly coupled non-abelian plasmas, Phys. Rev. D 86 (2012) 065008 [arXiv:1207.1450] [INSPIRE].

J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universal attractor in a highly occupied non-Abelian plasma, Phys. Rev. D 89 (2014) 114007 [arXiv:1311.3005] [INSPIRE].

J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies, Phys. Rev. D 89 (2014) 074011 [arXiv:1303.5650] [INSPIRE].

J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Basin of attraction for turbulent thermalization and the range of validity of classical-statistical simulations, JHEP 05 (2014) 054 [arXiv:1312.5216] [INSPIRE].

A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].

A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting and D. Teaney, Matching the nonequilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic theory, Phys. Rev. Lett. 122 (2019) 122302 [arXiv:1805.01604] [INSPIRE].

A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting and D. Teaney, Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions, Phys. Rev. C 99 (2019) 034910 [arXiv:1805.00961] [INSPIRE].

R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].

K. Boguslavski, A. Kurkela, T. Lappi and J. Peuron, Highly occupied gauge theories in 2+1 dimensions: A self-similar attractor, Phys. Rev. D 100 (2019) 094022 [arXiv:1907.05892] [INSPIRE].

E. Braaten and R.D. Pisarski, Soft Amplitudes in Hot Gauge Theories: A General Analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].

J.-P. Blaizot and E. Iancu, The quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept. 359 (2002) 355 [hep-ph/0101103] [INSPIRE].

A. Kurkela, T. Lappi and J. Peuron, Time evolution of linearized gauge field fluctuations on a real-time lattice, Eur. Phys. J. C 76 (2016) 688 [arXiv:1610.01355] [INSPIRE].

K. Boguslavski, A. Kurkela, T. Lappi and J. Peuron, Spectral function for overoccupied gluodynamics from real-time lattice simulations, Phys. Rev. D 98 (2018) 014006 [arXiv:1804.01966] [INSPIRE].

A. Piñeiro Orioli and J. Berges, Breaking the fluctuation-dissipation relation by universal transport processes, Phys. Rev. Lett. 122 (2019) 150401 [arXiv:1810.12392] [INSPIRE].

K. Boguslavski and A. Piñeiro Orioli, Unraveling the nature of universal dynamics in O(N) theories, Phys. Rev. D 101 (2020) 091902 [arXiv:1911.04506] [INSPIRE].

G. Aarts, Spectral function at high temperature in the classical approximation, Phys. Lett. B 518 (2001) 315 [hep-ph/0108125] [INSPIRE].

S. Schlichting, D. Smith and L. von Smekal, Spectral functions and critical dynamics of the O(4) model from classical-statistical lattice simulations, Nucl. Phys. B 950 (2020) 114868 [arXiv:1908.00912] [INSPIRE].

K. Boguslavski, A. Kurkela, T. Lappi and J. Peuron, Heavy quark diffusion in an overoccupied gluon plasma, JHEP 09 (2020) 077 [arXiv:2005.02418] [INSPIRE].

J. Berges, K. Boguslavski, M. Mace and J.M. Pawlowski, Gauge-invariant condensation in the nonequilibrium quark-gluon plasma, Phys. Rev. D 102 (2020) 034014 [arXiv:1909.06147] [INSPIRE].

J. Berges, A. Rothkopf and J. Schmidt, Non-thermal fixed points: Effective weak-coupling for strongly correlated systems far from equilibrium, Phys. Rev. Lett. 101 (2008) 041603 [arXiv:0803.0131] [INSPIRE].

A. Piñeiro Orioli, K. Boguslavski and J. Berges, Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points, Phys. Rev. D 92 (2015) 025041 [arXiv:1503.02498] [INSPIRE].

R. Walz, K. Boguslavski and J. Berges, Large-N kinetic theory for highly occupied systems, Phys. Rev. D 97 (2018) 116011 [arXiv:1710.11146] [INSPIRE].

J. Berges, K. Boguslavski, A. Chatrchyan and J. Jaeckel, Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories, Phys. Rev. D 96 (2017) 076020 [arXiv:1707.07696] [INSPIRE].

I. Chantesana, A. Piñeiro Orioli and T. Gasenzer, Kinetic theory of nonthermal fixed points in a Bose gas, Phys. Rev. A 99 (2019) 043620 [arXiv:1801.09490] [INSPIRE].

J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions, Phys. Rev. Lett. 114 (2015) 061601 [arXiv:1408.1670] [INSPIRE].

J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Nonequilibrium fixed points in longitudinally expanding scalar theories: infrared cascade, Bose condensation and a challenge for kinetic theory, Phys. Rev. D 92 (2015) 096006 [arXiv:1508.03073] [INSPIRE].

M. Prüfer et al., Observation of universal dynamics in a spinor Bose gas far from equilibrium, Nature 563 (2018) 217 [arXiv:1805.11881] [INSPIRE].

S. Erne, R. Bücker, T. Gasenzer, J. Berges and J. Schmiedmayer, Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium, Nature 563 (2018) 225 [arXiv:1805.12310] [INSPIRE].

J.A.P. Glidden, C. Eigen, L.H. Dogra, T.A. Hilker, R.P. Smith and Z. Hadzibabic, Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium, Nature Phys. 17 (2021) 457 [arXiv:2006.01118] [INSPIRE].

T. Lappi and J. Peuron, Plasmon mass scale in classical nonequilibrium gauge theory, Phys. Rev. D 95 (2017) 014025 [arXiv:1610.03711] [INSPIRE].

T. Lappi and J. Peuron, Plasmon mass scale in two dimensional classical nonequilibrium gauge theory, Phys. Rev. D 97 (2018) 034017 [arXiv:1712.02194] [INSPIRE].

L. Shen and J. Berges, Spectral, statistical and vertex functions in scalar quantum field theory far from equilibrium, Phys. Rev. D 101 (2020) 056009 [arXiv:1912.07565] [INSPIRE].

P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].

A. Rebhan, M. Strickland and M. Attems, Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations, Phys. Rev. D 78 (2008) 045023 [arXiv:0802.1714] [INSPIRE].

M. Attems, A. Rebhan and M. Strickland, Instabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulations, Phys. Rev. D 87 (2013) 025010 [arXiv:1207.5795] [INSPIRE].

A. Kurkela and A. Mazeliauskas, Chemical Equilibration in Hadronic Collisions, Phys. Rev. Lett. 122 (2019) 142301 [arXiv:1811.03040] [INSPIRE].

A. Kurkela, A. Mazeliauskas and R. Törnkvist, Collective flow in single-hit QCD kinetic theory, arXiv:2104.08179 [INSPIRE].

P. Romatschke and M. Strickland, Collective modes of an anisotropic quark-gluon plasma II, Phys. Rev. D 70 (2004) 116006 [hep-ph/0406188] [INSPIRE].

R. Kobes, G. Kunstatter and A. Rebhan, Gauge dependence identities and their application at finite temperature, Nucl. Phys. B 355 (1991) 1 [INSPIRE].