Brentuximab vedotin resistance in classic Hodgkin's lymphoma and its therapeutic strategies: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cairns J (2006) Mutation selection and the natural history of cancer. Sci Aging Knowl Environ. https://doi.org/10.1038/255197a0
Ruoslahti E (1996) How cancer spreads. Sci Am 275(3):72–77. https://doi.org/10.1038/scientificamerican0996-72
Mishra A, Shiozawa Y, Pienta KJ, Taichman RS (2011) Homing of cancer cells to the bone. Cancer Microenviron 4(3):221–235. https://doi.org/10.1007/s12307-011-0083-6
The Walter and Eliza Hall Institute of Medical Research (2022) Myeloproliferative disorders. WEHI. https://www.wehi.edu.au/research-diseases/cancer/myeloproliferative-disorders#:~:text=Myeloproliferative%20disorders%20differ%20from%20leukaemia,cells%20tend%20to%20be%20immature.
PDQ® Adult Treatment Editorial Board (2023) PDQ Myelodysplastic Syndromes Treatment. National Cancer Institute, Bethesda. https://www.cancer.gov/types/myeloproliferative/patient/myelodysplastic-treatment-pdq#:~:text=Myelodysplastic%20syndromes%20are%20a%20group,blood%20cells%20and%20bone%20marrow.
Liu Y, Sattarzadeh A, Diepstra A, Visser L, Van Den Berg A (2014) The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol 24:15–22. https://doi.org/10.1016/j.semcancer.2013.07.002
Calabretta E, D’Amore F, Carlo-Stella C (2019) Immune and inflammatory cells of the tumor microenvironment represent novel therapeutic targets in classical Hodgkin lymphoma. Int J Mol Sci 20(21):5503. https://doi.org/10.3390/ijms20215503
Bräuninger A, Schmitz R, Bechtel D, Renné C, Hansmann M, Küppers R (2005) Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer 118(8):1853–1861. https://doi.org/10.1002/ijc.21716
Su C-C, Chiu H-H, Chang C-C, Chen J-C, Hsu SM (2004) CD30 is involved in the inhibition of T-cell proliferation by Hodgkin’s Reed-Sternberg cells. Can Res 64(6):2148–2152. https://doi.org/10.1158/0008-5472.CAN-03-1337
Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, Law C-L, Doronina SO, Siegall CB, Senter PD, Wahl AF (2003) cAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102(4):1458–1465. https://doi.org/10.1182/blood-2003-01-0039
Chen R, Herrera AF, Hou J, Chen L, Wu J, Guo Y, Synold TW, Ngo VN, Puverel S, Mei M, Popplewell L, Yi S, Song JY, Tao S, Wu X, Chan WC, Forman SJ, Kwak LW, Rosen ST, Newman EM (2020) Inhibition of MDR1 overcomes resistance to Brentuximab vedotin in Hodgkin lymphoma. Clin Cancer Res 26(5):1034–1044. https://doi.org/10.1158/1078-0432.CCR-19-1768
Halpern W, Hutto D (2013) Biopharmaceuticals. Haschek Rousseaux’s Handb Toxicol Pathol 3(25):751–782. https://doi.org/10.1016/B978-0-12-415759-0.00025-X
Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, Ramchandren R, Bartlett NL, Cheson BD, de Vos S, Forero-Torres A, Moskowitz CH, Connors JM, Engert A, Larsen EK, Kennedy DA, Sievers EL, Chen R (2012) Results of a pivotal phase II study of Brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 30(18):2183–2189. https://doi.org/10.1200/JCO.2011.38.0410
de Claro RA, McGinn K, Kwitkowski V, Bullock J, Khandelwal A, Habtemariam B, Ouyang Y, Saber H, Lee K, Koti K, Rothmann M, Shapiro M, Borrego F, Clouse K, Chen XH, Brown J, Akinsanya L, Kane R, Kaminskas E, Farrell A, Pazdur R (2012) U.S. Food and Drug Administration approval summary: Brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or relapsed systemic anaplastic large-cell lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res 18(21):5845–5849. https://doi.org/10.1158/1078-0432.CCR-12-1803
Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, Younes A, Alekseev S, Illés Á, Picardi M, Lech-Maranda E, Oki Y, Feldman T, Smolewski P, Savage KJ, Bartlett NL, Walewski J, Chen R, Ramchandren R, Zinzani PL, ECHELON-1 Study Group (2018) Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med 378(4):331–344. https://doi.org/10.1056/NEJMoa1708984
Vezina HE, Cotreau M, Han TH, Gupta M (2017) Antibody-drug conjugates as cancer therapeutics: past, present, and future. J Clin Pharmacol 57(Suppl 10):S11–S25. https://doi.org/10.1002/jcph.981
Loganzo F, Sung M, Gerber HP (2016) Mechanisms of resistance to antibody-drug conjugates. Mol Cancer Ther 15(12):2825–2834. https://doi.org/10.1158/1535-7163.MCT-16-0408
van de Donk NW, Dhimolea E (2012) Brentuximab vedotin. mAbs 4(4):458–465. https://doi.org/10.4161/mabs.20230
Dosio F, Brusa P, Cattel L (2011) Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins 3(7):848–883. https://doi.org/10.3390/toxins3070848
Collins G, Bruce D, Eyre T (2014) New therapies in T-cell lymphoma. Lymphoma Chronic Lymph Leuk 1:1–8. https://doi.org/10.4137/LCLL.S13716
Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21(7):778–784. https://doi.org/10.1038/nbt832
Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, Senter PD, Alley SC (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res Off J Am Assoc Cancer Res 16(3):888–897. https://doi.org/10.1158/1078-0432.CCR-09-2069
Garnock-Jones KP (2013) Brentuximab vedotin: a review of its use in patients with Hodgkin lymphoma and systemic anaplastic large cell lymphoma following previous treatment failure. Drugs 73(4):371–381. https://doi.org/10.1007/s40265-013-0031-5
Chen R, Gopal AK, Smith ST, Ansell SM, Rosenblatt JD, Savage KJ, Connors JM, Engert A, Larsen E, Huebner D, Fong AP, Younes A (2016) Five-year survival and durability results of Brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood 128(12):1562–1566. https://doi.org/10.1182/blood-2016-02-699850
Gutman S, Piper M, Grant MD, Basch E, Oliansky DM, Aronson N (2013) Progression-free survival: what does it mean for psychological well-being or quality of life? [Dataset]. In: PsycEXTRA Dataset. Doi: https://doi.org/10.1037/e553812013-001.
Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, Diehl V (1982) Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature 299(5878):65–67. https://doi.org/10.1038/299065a0
Smith CR, Gruss H, Davis T, Anderson DM, Farrah T, Baker EA, Sutherland GR, Brannan CI, Copeland NG, Jenkins NA, Grabstein KH, Gliniak B, McAlister IP, Fanslow WC, Alderson MR, Falk BA, Gimpel S, Gillis S, Din WS, Armitage RJ (1993) CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 73(7):1349–1360. https://doi.org/10.1016/0092-8674(93)90361
Dürkop H, Foss H, Eitelbach F, Anagnostopoulos I, Latza U, Pileri S, Stein H (2000) Expression of the CD30 antigen in non-lymphoid tissues and cells. J Pathol 190(5):613–618. https://doi.org/10.1002/(sici)1096-9896(200004)190:5
Horie R, Watanabe T (1998) CD30: expression and function in health and disease. Semin Immunol 10(6):457–470. https://doi.org/10.1006/smim.1998.0156
Amakawa R, Hakem A, Kündig TM, Matsuyama T, Simard J, Timms E, Wakeham A, Mittruecker HW, Griesser H, Takimoto H, Schmits R, Shahinian A, Ohashi PS, Penninger JM, Mak TW (1996) Impaired negative selection of T cells in Hodgkin’s disease antigen CD30–deficient mice. Cell 84(4):551–562. https://doi.org/10.1016/s0092-8674(00)81031-4
Kishimoto H, Sprent J (1997) Negative selection in the thymus includes semimature T cells. J Exp Med 185(2):263–272. https://doi.org/10.1084/jem.185.2.263
Chen R, Hou J, Newman E, Kim Y, Donohue C, Liu X, Thomas SH, Forman SJ, Kane SE (2015) CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to Brentuximab vedotin. Mol Cancer Ther 14(6):1376–1384. https://doi.org/10.1158/1535-7163.MCT-15-0036
Van Der Weyden C, Pileri S, Feldman A, Whisstock JC, Prince HM (2017) Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions. Blood Cancer J 7(9):e603. https://doi.org/10.1038/bcj.2017.85
Nathwani N, Krishnan AY, Huang Q, Kim Y, Karanes C, Smith EP, Forman SJ, Sievers E, Thomas SH, Chen RW (2012) Persistence of CD30 expression in Hodgkin lymphoma following Brentuximab vedotin (SGN-35) treatment failure. Leuk Lymphoma 53(10):2051–2053. https://doi.org/10.3109/10428194.2012.666543
Jain N, Smith SW, Ghone S, Tomczuk B (2015) Current ADC linker chemistry. Pharm Res 32(11):3526–3540. https://doi.org/10.1007/s11095-015-1657-7
Kopp A, Thurber GM (2019) Severing ties: quantifying the payload release from antibody-drug conjugates. Cell Chem Biol 26(12):1631–1633. https://doi.org/10.1016/j.chembiol.2019.12.001
Barok M, Joensuu H, Isola J (2014) Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res 16(2):209. https://doi.org/10.1186/bcr3621
Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X, Li S (2021) Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B 11(12):3889–3907. https://doi.org/10.1016/j.apsb.2021.03.042
Caculitan NG, Dela Cruz Chuh J, Ma Y, Zhang D, Kozak KR, Liu Y, Pillow TH, Sadowsky J, Cheung TK, Phung Q, Haley B, Lee BC, Akita RW, Sliwkowski MX, Polson AG (2017) Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody-drug conjugates. Cancer Res 77(24):7027–7037. https://doi.org/10.1158/0008-5472.CAN-17-2391
Wei B, Gunzner-Toste J, Yao H, Wang T, Wang J, Xu Z, Chen J, Wai J, Nonomiya J, Tsai SP, Chuh J, Kozak KR, Liu Y, Yu SF, Lau J, Li G, Phillips GD, Leipold D, Kamath A, Su D, Safina B (2018) Discovery of peptidomimetic antibody-drug conjugate linkers with enhanced protease specificity. J Med Chem 61(3):989–1000. https://doi.org/10.1021/acs.jmedchem.7b01430
Steidl C, Connors JM, Gascoyne RD (2011) Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol 29(14):1812–1826. https://doi.org/10.1200/JCO.2010.32.8401
Connors JM, Cozen W, Steidl C, Carbone A, Hoppe RT, Flechtner H-H, Bartlett NL (2020) Hodgkin lymphoma. Nat Rev Dis Primers 6(1):55. https://doi.org/10.1038/s41572-020-0189-6
Reya T, Morrison SJ, Clarke M, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. https://doi.org/10.1038/35102167
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550. https://doi.org/10.1038/s41591-018-0014-x
Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ (2021) Tumour microenvironment stress promotes the development of drug resistance. Antioxidants (Basel, Switzerland) 10(11):1801. https://doi.org/10.3390/antiox10111801
Collins DM, Bossenmaier B, Kollmorgen G, Niederfellner G (2019) Acquired resistance to antibody-drug conjugates. Cancers 11(3):394. https://doi.org/10.3390/cancers11030394
Wang Y, Fan S, Zhong W, Zhou X, Li S (2017) Development and properties of valine-alanine based antibody-drug conjugates with monomethyl auristatin E as the potent payload. Int J Mol Sci 18(9):1860. https://doi.org/10.3390/ijms18091860
Ward ES, Ober R, Kang J, Sun W (2018) Endolysosomal targeting conjugates for improved delivery of cargo molecules to the endolysosomal compartment of target cells. Patent WO2018136455A1.
Kather JN, Suarez-Carmona M, Charoentong P, Weis CA, Hirsch D, Bankhead P, Horning M, Ferber D, Kel I, Herpel E, Schott S, Zörnig I, Utikal J, Marx A, Gaiser T, Brenner H, Chang-Claude J, Hoffmeister M, Jäger D, Halama N (2018) Topography of cancer-associated immune cells in human solid tumors. elife 7:e36967. https://doi.org/10.7554/eLife.36967
Mei M, Palmer J, Maddocks K, Martin P, Tsai N-C, Smith E, Popplewell L, Armenian S, Shouse G, Chen R, Kwak L, Rosen ST, Forman S, Bond D, Herrera AF (2022) P112: phase II trial of brentuximab vedotin plus ibrutinib in relapsed/refractory hodgkin lymphoma. Hemasphere 6:52. https://doi.org/10.1097/01.HS9.0000891016.06930.34
Liu T, Li Z, Zhang Q, De Amorim Bernstein K, Lozano-Calderon S, Choy E, Hornicek FJ, Duan Z (2016) Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget 7(50):83502–83513. https://doi.org/10.18632/oncotarget.13148
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.) 339(6121):819–823. https://doi.org/10.1126/science.1231143
Hansen HP, Leme AFP, Hallek M (2020) Role of ADAM10 as a CD30 sheddase in classical hodgkin lymphoma. Front Immunol. https://doi.org/10.3389/fimmu.2020.00398
Cho H, Shim MK, Moon Y, Song S, Kim J, Choi J, Kim J, Lee Y, Park JT, Kim Y, Ahn C, Kim MR, Yoon HM, Kim K (2022) Tumor-specific monomethyl auristatin E (MMAE) prodrug nanoparticles for safe and effective chemotherapy. Pharmaceutics 14(10):2131. https://doi.org/10.3390/pharmaceutics14102131
Shim N, Jeon SW, Yang S, Park JT, Jo M, Kim J, Choi J, Yun WS, Kim J, Lee Y, Shim MK, Kim Y, Kim K (2022) Comparative study of cathepsin B-cleavable linkers for the optimal design of cathepsin B-specific doxorubicin prodrug nanoparticles for targeted cancer therapy. Biomaterials 289:121806. https://doi.org/10.1016/j.biomaterials.2022.121806
De S, Shaknovich R, Riester M, Elemento O, Geng H, Kormaksson M, Jiang Y, Woolcock B, Johnson N, Polo JM, Cerchietti L, Gascoyne RD, Melnick A, Michor F (2013) Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet 9(1):e1003137. https://doi.org/10.1371/journal.pgen.1003137
Pan H, Jiang Y, Boi M, Tabbò F, Redmond D, Nie K, Ladetto M, Chiappella A, Cerchietti L, Shaknovich R, Melnick AM, Inghirami GG, Tam W, Elemento O (2015) Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 6:6921. https://doi.org/10.1038/ncomms7921
Amengual JE (2020) Can we use epigenetics to prime chemoresistant lymphomas? Hematol Am Soc Hematol Educ Program 1:85–94. https://doi.org/10.1182/hematology.2020000092
Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, Zheng L, Liu Z, Qiu Y (2020) Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. J Exp Clin Cancer Res CR 39(1):29. https://doi.org/10.1186/s13046-020-1536-x
Amengual JE, Clark-Garvey S, Kalac M, Scotto L, Marchi E, Neylon E, Johannet P, Wei Y, Zain J, O’Connor OA (2013) Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma. Blood 122(12):2104–2113. https://doi.org/10.1182/blood-2013-02-485441