Brain response pattern identification of fMRI data using a particle swarm optimization-based approach

Brain Informatics - Tập 3 - Trang 181-192 - 2016
Xinpei Ma1, Chun-An Chou1, Hiroki Sayama1, Wanpracha Art Chaovalitwongse2,3
1Department of Systems Science & Industrial Engineering, Binghamton University, the State University of New York, Binghamton, USA
2Departments of Industrial & Systems Engineering, Department of Radiology, Integrated Brain Imaging Center, University of Washington, Seattle, USA
3Department of Radiology, Integrated Brain Imaging Center, University of Washington, Seattle, USA

Tóm tắt

Many neuroscience studies have been devoted to understand brain neural responses correlating to cognition using functional magnetic resonance imaging (fMRI). In contrast to univariate analysis to identify response patterns, it is shown that multi-voxel pattern analysis (MVPA) of fMRI data becomes a relatively effective approach using machine learning techniques in the recent literature. MVPA can be considered as a multi-objective pattern classification problem with the aim to optimize response patterns, in which informative voxels interacting with each other are selected, achieving high classification accuracy associated with cognitive stimulus conditions. To solve the problem, we propose a feature interaction detection framework, integrating hierarchical heterogeneous particle swarm optimization and support vector machines, for voxel selection in MVPA. In the proposed approach, we first select the most informative voxels and then identify a response pattern based on the connectivity of the selected voxels. The effectiveness of the proposed approach was examined for the Haxby’s dataset of object-level representations. The computational results demonstrated higher classification accuracy by the extracted response patterns, compared to state-of-the-art feature selection algorithms, such as forward selection and backward selection.

Tài liệu tham khảo

Liu Y, Wang K, Chunshui Y, He Y, Zhou Y, Liang M, Wang L, Jiang T (2008) Regional homogeneity, functional connectivity and imaging markers of alzheimer’s disease: a review of resting-state fmri studies. Neuropsychologia 46(6):1648–1656 Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN et al (2010) Prediction of individual brain maturity using fmri. Science 329(5997):1358–1361 Coutanche MN, Thompson-Schill SL, Schultz RT (2011) Multi-voxel pattern analysis of fmri data predicts clinical symptom severity. Neuroimage 57(1):113–123 Lu Q, Liu G, Zhao J, Luo G, Yao Z (2012) Depression recognition using resting-state and event-related fmri signals. Magnc Reson Imaging 30(3):347–355 Collier AK, Wolf DH, Valdez JN, Turetsky BI, Elliott MA, Gur RE, Gur RC (2014) Comparison of auditory and visual oddball fmri in schizophrenia. Schizophr Res 158(1):183–188 Hart H, Radua J, Mataix-Cols D, Rubia K (2012) Meta-analysis of fmri studies of timing in attention-deficit hyperactivity disorder (adhd). Neurosci Biobehav Rev 36(10):2248–2256 Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6(1):15–28 Sun FT, Miller LM, D’Esposito M (2004) Measuring interregional functional connectivity using coherence and partial coherence analyses of fmri data. Neuroimage 21(2):647–658 Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in univariate linear modeling of fmri data. Neuroimage 14(6):1370–1386 De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E (2008) Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns. Neuroimage 43(1):44–58 Smith SM (2014) Overview of fmri analysis. Br J Radiol 77:167–175 Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74(6):970–974 Chou CA, Kampa K, Mehta S, Tungaraza R, Chaovalitwongse WA, Grabowski T (2014) Voxel selection framework in multi-voxel pattern analysis of fmri data for prediction of neural response to visual stimuli. Med Imaging IEEE Trans 33(4):925–934 Kampa K, Mehta S, Chou CA, Tungaraza R, Chaovalitwongse WA, Grabowski T (2014) Sparse optimization in feature selection: application in neuroimaging. J Global Optim 59(2):439–457. doi:10.1007/s10898-013-0134-2 Oreski S, Oreski G (2014) Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst Appl 41(4):2052–2064 Touryan J, Lau B, Dan Y (2002) Isolation of relevant visual features from random stimuli for cortical complex cells. J Neurosci 22(24):10811–10818 You W, Yang Z, Yuan M, Ji G (2014) Totalpls: local dimension reduction for multicategory microarray data. Human-Machine Syst IEEE Trans 44(1):125–138 Nakamura RY, Pereira LA, Costa K, Rodrigues D, Papa JP, Yang XS (2012) Bba: a binary bat algorithm for feature selection. In: Graphics, patterns and images (SIBGRAPI), 2012 25th SIBGRAPI Conference on, IEEE, pp 291–297 Oliveira LS, Sabourin R, Bortolozzi F, Suen CY (2002) Feature selection using multi-objective genetic algorithms for handwritten digit recognition. In: Pattern recognition, 2002. proceedings. 16th international conference on, vol 1, IEEE, pp. 568–571 Wang X, Yang J, Teng X, Xia W, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recogn Lett 28(4):459–471 Xue B, Zhang M, Browne WN (2013) Particle swarm optimization for feature selection in classification: a multi-objective approach. Cybernet IEEE Trans 43(6):1656–1671 Guo C, Zheng X (2014) Feature subset selection approach based on fuzzy rough set for igh-dimensional data. In: Granular computing (GrC), 2014 IEEE International Conference on, IEEE, pp 72–75 Kanan HR, Faez K (2008) An improved feature selection method based on ant colony optimization (aco) evaluated on face recognition system. Proc Sixth Int Symp Micro Mach Hum Sci 205(2):716–725 Paul S, Das S (2015) Simultaneous feature selection and weighting-an evolutionary multi-objective optimization approach. Pattern Recogn Lett 65:51–59 Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inform Sci 177(22):5033–5049 Yusta SC (2007) Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn Lett 30(5):525–534 Liu H, Motoda H (2012) Feature selection for knowledge discovery and data mining. Springer Science & Business Media, Berlin Ng TF, Pham TD, Jia X (2012) Feature interaction in subspace clustering using the choquet integral. Pattern Recogn 45(7):2645–2660 Rini DP, Shamsuddin SM, Yuhaniz SS (2011) Particle swarm optimization: technique, system and challenges. Int J Comput Appl 14(1):19–26 Huang SH (2003) Dimensionality reduction in automatic knowledge acquisition: a simple greedy search approach. Knowl Data Eng IEEE Trans 15(6):1364–1373 Ma X, Sayama H (2014) Hierarchical heterogeneous particle swarm optimization. In ALIFE 14: The fourteenth conference on the synthesis and simulation of living systems vol 14, pp 3–5 Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430 Haynes JD, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7(7):523–534 Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fmri data. Trends Cogn Sci 10(9):424–430 Davatzikos C, Ruparel K, Fan Y, Shen D, Acharyya M, Loughead J, Gur R, Langleben DD (2005) Classifying spatial patterns of brain activity with machine learning methods: application to lie detection. Neuroimage 28(3):663–668 Polyn SM (2005) Neuroimaging, behavioral, and computational investigations of memory targeting. Ph.D. thesis, Princeton University Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, Li Y, Hu D (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135(5):1498–1507 Misaki M, Kim Y, Bandettini PA, Kriegeskorte N (2010) Comparison of multivariate classifiers and response normalizations for pattern-information fmri. Neuroimage 53(1):103–118 Friston KJ, Jezzard P, Turner R (1994) Analysis of functional mri time-series. Hum Brain Map 1(2):153–171 Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fmri: a tutorial overview. Neuroimage 45(1):S199–S209 Chou CA, Mehta SH, Tungaraza RF, Chaovalitwongse WA, Grabowski TJ et al (2012) Information-theoretic based feature selection for multi-voxel pattern analysis of fmri data. In: Brain Informatics, Springer, pp 196–208 Poldrack RA, Mumford JA, Nichols TE (2011) Handbook of functional MRI data analysis. Cambridge University Press, Cambridge Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg M, Turner R (1998) Event-related fmri: characterizing differential responses. Neuroimage 7(1):30–40 Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, New York, pp 39–43 Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, New York Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824 Liu Y, Wang G, Chen H, Dong H, Zhu X, Wang S (2011) An improved particle swarm optimization for feature selection. J Bionic Eng 8(2):191–200 Unler A, Murat A (2010) A discrete particle swarm optimization method for feature selection in binary classification problems. Eur J Operat Res 206(3):528–539 Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Evolutionary computation, 2001. Proceedings of the 2001 Congress on, vol 1, .IEEE, pp 81–86 Van der Merwe D, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: Evolutionary computation, 2003. CEC’03. The 2003 congress on, vol 1, IEEE, pp 215–220 Ramadan RM, Abdel-Kader RF (2009) Face recognition using particle swarm optimization-based selected features. Int J Signal Process Image Process Pattern Recogn 2(2):51–65 Zhang JR, Zhang J, Lok TM, Lyu MR (2007) A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl Math Comput 185(2):1026–1037 Chou CA, Kampa K, Mehta SH, Tungaraza RF, Chaovalitwongse W, Grabowski TJ et al (2014) Voxel selection framework in multi-voxel pattern analysis of fmri data for prediction of neural response to visual stimuli. Med Imaging IEEE Trans 33(4):925–934 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830